Advertisement

A Degenerate Agglomerative Hierarchical Clustering Algorithm for Community Detection

  • Antonio Maria Fiscarelli
  • Aleksandr Beliakov
  • Stanislav Konchenko
  • Pascal Bouvry
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10751)

Abstract

Community detection consists of grouping related vertices that usually show high intra-cluster connectivity and low inter-cluster connectivity. This is an important feature that many networks exhibit and detecting such communities can be challenging, especially when they are densely connected. The method we propose is a degenerate agglomerative hierarchical clustering algorithm (DAHCA) that aims at finding a community structure in networks. We tested this method using common classes of graph benchmarks and compared it to some state-of-the-art community detection algorithms.

Keywords

Community detection Graph clustering Graph theory 

References

  1. 1.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Albert, R., Jeong, H., Barabási, A.L.: Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999)CrossRefGoogle Scholar
  3. 3.
    Jeong, H., Tombor, B., Albert, R., Oltvai, Z.N., Barabási, A.L.: The large-scale organization of metabolic networks. Nature 407(6804), 651–654 (2000)CrossRefGoogle Scholar
  4. 4.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)CrossRefGoogle Scholar
  6. 6.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)CrossRefGoogle Scholar
  7. 7.
    Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)CrossRefGoogle Scholar
  8. 8.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)CrossRefGoogle Scholar
  9. 9.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, I., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005).  https://doi.org/10.1007/11569596_31 CrossRefGoogle Scholar
  10. 10.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)CrossRefGoogle Scholar
  11. 11.
    Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech.: Theory Exp. 2005(09), P09008 (2005)CrossRefGoogle Scholar
  13. 13.
    Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)CrossRefGoogle Scholar
  14. 14.
    scikit learn: User guide - clustering (2017). http://scikit-learn.org/stable/modules/clustering.html. Accessed 25 Sept 2017
  15. 15.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bagnoli, F., Massaro, E., Guazzini, A.: Community-detection cellular automata with local and long-range connectivity. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 204–213. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33350-7_21 CrossRefGoogle Scholar
  17. 17.
    Lancichinetti, A., Fortunato, S.: Erratum: community detection algorithms: a comparative analysis. [Phys. Rev. E 80, 056117 (2009)]. Phys. Rev. E 89(4), 049902 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.C2DH, CSC-ILIALUniversity of LuxembourgEsch-sur-AlzetteLuxembourg
  2. 2.FSTC-CSC/ILIAS & SnTUniversity of LuxembourgEsch-sur-AlzetteLuxembourg

Personalised recommendations