Skip to main content

Stem Cell-Based RPE Therapy for Retinal Diseases: Engineering 3D Tissues Amenable for Regenerative Medicine

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Abstract

Recent clinical trials based on human pluripotent stem cell-derived retinal pigment epithelium cells (hPSC-RPE cells) were clearly a success regarding safety outcomes. However the delivery strategy of a cell suspension, while being a smart implementation of a cell therapy, might not be sufficient to achieve the best results. More complex reconstructed tissue formulations are required, both to improve functionality and to target pathological conditions with altered Bruch’s membrane like age-related macular degeneration (AMD). Herein, we describe the various options regarding the stem cell source choices and the different strategies elaborated in the recent years to develop engineered RPE sheets amenable for regenerative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambati J, Ambati BK, Yoo SH et al (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293

    Google Scholar 

  • Ben M'Barek K, Regent F, Monville C (2015) Use of human pluripotent stem cells to study and treat retinopathies. World J Stem cells 7:596–604

    Google Scholar 

  • Bharti K, Miller SS, Arnheiter H (2011) The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells. Pigment Cell Melanoma Res 24:21–34

    Google Scholar 

  • Bharti K, Rao M, Hull SC et al (2014) Developing cellular therapies for retinal degenerative diseases. Invest Ophthalmol Vis Sci 55:1191–1202

    Google Scholar 

  • Binder S, Stanzel BV, Krebs I et al (2007) Transplantation of the RPE in AMD. Prog Retin Eye Res 26:516–554

    Google Scholar 

  • Bitner H, Schatz P, Mizrahi-Meissonnier L et al (2012) Frequency, genotype, and clinical spectrum of best vitelliform macular dystrophy: data from a national center in Denmark. Am J Ophthalmol 154(403–412):e404

    Google Scholar 

  • Ben M’Barek K, Habeler W, Plancheron A et al (2017) Human ESC-derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 9(421)

    Google Scholar 

  • Capeans C, Pineiro A, Pardo M et al (2003) Amniotic membrane as support for human retinal pigment epithelium (RPE) cell growth. Acta Ophthalmol Scand 81:271–277

    Google Scholar 

  • da Cruz L, Chen FK, Ahmado A et al (2007) RPE transplantation and its role in retinal disease. Prog Retin Eye Res 26:598–635

    Google Scholar 

  • Diniz B, Thomas P, Thomas B et al (2013) Subretinal implantation of retinal pigment epithelial cells derived from human embryonic stem cells: improved survival when implanted as a monolayer. Invest Ophthalmol Vis Sci 54:5087–5096

    Google Scholar 

  • Gehrs KM, Anderson DH, Johnson LV et al (2006) Age-related macular degeneration--emerging pathogenetic and therapeutic concepts. Ann Med 38:450–471

    Google Scholar 

  • Gouras P, Flood MT, Kjedbye H et al (1985) Transplantation of cultured human retinal epithelium to Bruch's membrane of the owl monkey's eye. Curr Eye Res 4:253–265

    Google Scholar 

  • Hartong DT, Berson EL, Dryja TP (2006) Retinitis pigmentosa. Lancet 368:1795–1809

    Google Scholar 

  • Hsiung J, Zhu D, Hinton DR (2015) Polarized human embryonic stem cell-derived retinal pigment epithelial cell monolayers have higher resistance to oxidative stress-induced cell death than nonpolarized cultures. Stem Cells Transl Med 4:10–20

    Google Scholar 

  • Hu Y, Liu L, Lu B et al (2012) A novel approach for subretinal implantation of ultrathin substrates containing stem cell-derived retinal pigment epithelium monolayer. Ophthalmic Res 48:186–191

    Google Scholar 

  • Hynes SR, Lavik EB (2010) A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol 248:763–778

    Google Scholar 

  • Ilmarinen T, Hiidenmaa H, Koobi P et al (2015) Ultrathin polyimide membrane as cell carrier for subretinal transplantation of human embryonic stem cell derived retinal pigment epithelium. PLoS One 10:e0143669

    Google Scholar 

  • Kador KE, Goldberg JL (2012) Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev Ophthalmol 7:459–470

    Google Scholar 

  • Kamao H, Mandai M, Okamoto S et al (2014) Characterization of human induced pluripotent stem cell-derived retinal pigment epithelium cell sheets aiming for clinical application. Stem Cell Rep 2:205–218

    Google Scholar 

  • Kiilgaard JF, Scherfig E, Prause JU et al (2012) Transplantation of amniotic membrane to the subretinal space in pigs. Stem Cells Int 2012:716968

    Google Scholar 

  • Klimanskaya I, Hipp J, Rezai KA et al (2004) Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 6:217–245

    Google Scholar 

  • Leach LL, Clegg DO (2015) Concise review: making stem cells retinal: methods for deriving retinal pigment epithelium and implications for patients with ocular disease. Stem Cells 33:2363–2373

    Google Scholar 

  • Lustremant C, Habeler W, Plancheron A et al (2013) Human induced pluripotent stem cells as a tool to model a form of Leber congenital amaurosis. Cell Reprogram 15:233–246

    Google Scholar 

  • Meyer JS, Howden SE, Wallace KA et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29:1206–1218

    Google Scholar 

  • Mandai M, Watanabe A, Kurimoto Y et al (2017) Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N Engl J Med. 376:1038–1046

    Google Scholar 

  • Nazari H, Zhang L, Zhu D et al (2015) Stem cell based therapies for age-related macular degeneration: the promises and the challenges. Prog Retin Eye Res 48:1–39

    Google Scholar 

  • Pennington BO, Clegg DO (2016) Pluripotent stem cell-based therapies in combination with substrate for the treatment of age-related macular degeneration. J Ocul Pharmacol Ther Off J Assoc Ocul Pharmacol Ther 32:261–271

    Google Scholar 

  • Radtke ND, Aramant RB, Petry HM et al (2008) Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am J Ophthalmol 146:172–182

    Google Scholar 

  • Ramsden CM, Powner MB, Carr AJ et al (2013) Stem cells in retinal regeneration: past, present and future. Development 140:2576–2585

    Google Scholar 

  • Reichman S, Terray A, Slembrouck A et al (2014) From confluent human iPS cells to self-forming neural retina and retinal pigmented epithelium. Proc Natl Acad Sci U S A 111:8518–8523

    Google Scholar 

  • Riera M, Fontrodona L, Albert S et al (2016) Comparative study of human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC) as a treatment for retinal dystrophies. Mol Ther Methods Clin Dev 3:16010

    Google Scholar 

  • Salero E, Blenkinsop TA, Corneo B et al (2012) Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell 10:88–95

    Google Scholar 

  • Schwartz SD, Hubschman JP, Heilwell G et al (2012) Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 379:713–720

    Google Scholar 

  • Schwartz SD, Regillo CD, Lam BL et al (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385:509–516

    Google Scholar 

  • Song MJ, Bharti K (2016) Looking into the future: using induced pluripotent stem cells to build two and three dimensional ocular tissue for cell therapy and disease modeling. Brain Res 1638:2–14

    Google Scholar 

  • Sparrow JR, Hicks D, Hamel CP (2010) The retinal pigment epithelium in health and disease. Curr Mol Med 10:802–823

    Google Scholar 

  • Stanzel BV, Liu Z, Somboonthanakij S et al (2014) Human RPE stem cells grown into polarized RPE monolayers on a polyester matrix are maintained after grafting into rabbit subretinal space. Stem Cell Rep 2:64–77

    Google Scholar 

  • Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Google Scholar 

  • Thumann G, Schraermeyer U, Bartz-Schmidt KU et al (1997) Descemet's membrane as membranous support in RPE/IPE transplantation. Curr Eye Res 16:1236–1238

    Google Scholar 

  • Wong WL, Su X, Li X et al (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health 2:e106–e116

    Google Scholar 

  • Wu J, Ocampo A, Izpisua Belmonte JC (2016) Cellular metabolism and induced pluripotency. Cell 166:1371–1385

    Google Scholar 

Download references

Acknowledgments

I-Stem is supported by the AFM-Téléthon. This work was supported by grants from the Fondation pour la Recherche Medicale (Bio-engineering program - DBS20140930777), the LABEX REVIVE (ANR-10-LABX-73), NeurATRIS ​(Investissements d'Avenir - ANR-11-INBS-0011), INGESTEM: the National Infrastructure Engineering for Pluripotent and differentiated Stem cells (Investissements d'Avenir - ANR-11-INBS-000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Monville .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben M’Barek, K., Habeler, W., Monville, C. (2018). Stem Cell-Based RPE Therapy for Retinal Diseases: Engineering 3D Tissues Amenable for Regenerative Medicine. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_76

Download citation

Publish with us

Policies and ethics