Role of Sirtuins in Retinal Function Under Basal Conditions

  • Jonathan B. Lin
  • Shunsuke Kubota
  • Raul Mostoslavsky
  • Rajendra S. ApteEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1074)


Sirtuins are NAD+-dependent enzymes that govern cellular homeostasis by regulating the acylation status of their diverse target proteins. We recently demonstrated that both rod and cone photoreceptors rely on NAMPT-mediated NAD+ biosynthesis to meet their energetic requirements. Moreover, we found that this NAD+-dependent retinal homeostasis relies, in part, on maintenance of optimal activity of the mitochondrial sirtuins and of SIRT3 in particular. Nonetheless, it is unknown whether other sirtuin family members also play important roles in retinal homeostasis. Our results suggest that SIRT1, SIRT2, SIRT4, and SIRT6 are dispensable for retinal survival at baseline, as individual deletion of each of these sirtuins does not cause retinal degeneration by fundus biomicroscopy or retinal dysfunction by ERG. These findings have significant implications and inform future studies investigating the mechanisms underlying the central role of NAD+ biosynthesis in retinal survival and function.


Sirtuins NAD+ Retinal degeneration Neurodegeneration Photoreceptors Retina 



This work was supported by NIH Grants R01 EY019287 (R.S.A.) and P30 EY02687 (Vision Core Grant); the C.M. and M.A. Reeves Foundation (R.S.A.); Research to Prevent Blindness (R.S.A.); the Hope Center (R.S.A.); the Lacy Foundation (S.K.); the Schulak Family Gift Fund for Retinal Research (R.S.A.); the Jeffrey Fort Innovation Fund (R.S.A.); and the Robert Machemer Foundation (S.K.). Additional funding comes from an unrestricted grant to the Department of Ophthalmology and Visual Sciences of Washington University School of Medicine from Research to Prevent Blindness. J.B.L. was supported by the Washington University in St. Louis Medical Scientist Training Program (NIH Grant T32 GM007200), the Washington University in St. Louis Institute of Clinical and Translational Sciences (NIH Grants UL1 TR000448, TL1 TR000449), the Washington University Diabetic Cardiovascular Disease Center, the American Federation for Aging Research, and the VitreoRetinal Surgery Foundation.


  1. Chen J, Michan S, Juan AM et al (2013) Neuronal sirtuin1 mediates retinal vascular regeneration in oxygen-induced ischemic retinopathy. Angiogenesis 16:985–992CrossRefPubMedPubMedCentralGoogle Scholar
  2. Hirschey MD, Shimazu T, Jing E et al (2011) SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell 44:177–190CrossRefPubMedPubMedCentralGoogle Scholar
  3. Imai S, Armstrong CM, Kaeberlein M et al (2000) Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800CrossRefPubMedPubMedCentralGoogle Scholar
  4. Jaliffa C, Ameqrane I, Dansault A et al (2009) Sirt1 involvement in rd10 mouse retinal degeneration. Invest Ophthalmol Vis Sci 50:3562–3572CrossRefPubMedPubMedCentralGoogle Scholar
  5. Le YZ, Ash JD, Al-Ubaidi MR et al (2004) Targeted expression of Cre recombinase to cone photoreceptors in transgenic mice. Mol Vis 10:1011–1018PubMedGoogle Scholar
  6. Li S, Chen D, Sauve Y et al (2005) Rhodopsin-iCre transgenic mouse line for Cre-mediated rod-specific gene targeting. Genesis 41:73–80CrossRefPubMedPubMedCentralGoogle Scholar
  7. Lin JB, Kubota S, Ban N et al (2016) NAMPT-Mediated NAD(+) biosynthesis is essential for vision in mice. Cell Rep 17:69–85CrossRefPubMedPubMedCentralGoogle Scholar
  8. Liszt G, Ford E, Kurtev M et al (2005) Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280:21313–21320CrossRefPubMedGoogle Scholar
  9. Mattapallil MJ, Wawrousek EF, Chan CC et al (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927CrossRefPubMedPubMedCentralGoogle Scholar
  10. McBurney MW, Yang X, Jardine K et al (2003) The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol Cell Biol 23:38–54CrossRefPubMedPubMedCentralGoogle Scholar
  11. Michishita E, Park JY, Burneskis JM et al (2005) Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol Biol Cell 16:4623–4635CrossRefPubMedPubMedCentralGoogle Scholar
  12. Mostoslavsky R, Chua KF, Lombard DB et al (2006) Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell 124:315–329CrossRefPubMedGoogle Scholar
  13. North BJ, Verdin E (2007) Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2:e784CrossRefPubMedPubMedCentralGoogle Scholar
  14. Schwer B, North BJ, Frye RA et al (2002) The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J Cell Biol 158:647–657CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sebastian C, Zwaans BM, Silberman DM et al (2012) The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151:1185–1199CrossRefPubMedPubMedCentralGoogle Scholar
  16. Shindler KS, Ventura E, Rex TS et al (2007) SIRT1 activation confers neuroprotection in experimental optic neuritis. Invest Ophthalmol Vis Sci 48:3602–3609CrossRefPubMedPubMedCentralGoogle Scholar
  17. Silberman DM, Ross K, Sande PH et al (2014) SIRT6 is required for normal retinal function. PLoS One 9:e98831CrossRefPubMedPubMedCentralGoogle Scholar
  18. Tanno M, Sakamoto J, Miura T et al (2007) Nucleocytoplasmic shuttling of the NAD+−dependent histone deacetylase SIRT1. J Biol Chem 282:6823–6832CrossRefPubMedGoogle Scholar
  19. Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science (New York, NY) 350:1208–1213CrossRefGoogle Scholar
  20. Zeng Y, Yang K (2015) Sirtuin 1 participates in the process of age-related retinal degeneration. Biochem Biophys Res Commun 468:167–172CrossRefPubMedGoogle Scholar
  21. Zuo L, Khan RS, Lee V et al (2013) SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci 54:5097–5102CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jonathan B. Lin
    • 1
    • 2
  • Shunsuke Kubota
    • 1
  • Raul Mostoslavsky
    • 3
  • Rajendra S. Apte
    • 1
    • 4
    • 5
    Email author
  1. 1.Department of Ophthalmology & Visual SciencesWashington University School of MedicineSt. LouisUSA
  2. 2.Neuroscience Graduate Program, Division of Biology and Biomedical SciencesWashington University School of MedicineSt. LouisUSA
  3. 3.Massachusetts General Hospital Cancer Center, Harvard Medical SchoolBostonUSA
  4. 4.Department of Developmental BiologyWashington University School of MedicineSt. LouisUSA
  5. 5.Department of MedicineWashington University School of MedicineSt. LouisUSA

Personalised recommendations