Skip to main content

Müller Glia Reactivity and Development of Gliosis in Response to Pathological Conditions

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1074))

Abstract

Within the mammalian retina, both Müller glia and astrocytes display reactivity in response to many forms of retinal injury and disease in a process termed gliosis. Reactive gliosis is a complex process that is considered to represent a cellular response to protect the retina from further damage and to promote its repair following pathological insult. It includes morphological, biochemical and physiological changes, which may vary depending on the type and degree of the initial injury. Not only does gliosis have numerous triggers, but also there is a great degree of heterogeneity in the glial response, creating multiple levels of complexity. For these reasons, understanding the process of glial scar formation and how this process differs in different pathological conditions and finding strategies to circumvent these barriers represent major challenges to the advancement of many ocular therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DH, Guérin CJ, Erickson PA et al (1986) Morphological recovery in the reattached retina. Invest Ophthalmol Vis Sci 27:168–183

    CAS  PubMed  Google Scholar 

  • Bringmann A, Wiedemann P (2012) Müller glial cells in retinal disease. Ophthalmologica 227:1–19

    Article  Google Scholar 

  • Bringmann A, Pannicke T, Grosche J et al (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  CAS  Google Scholar 

  • Cao W, Li F, Steinberg RH et al (2001) Development of normal and injury-induced gene expression of aFGF, bFGF, CNTF, BDNF, GFAP and IGF-I in the rat retina. Exp Eye Res 72:591–604

    Article  CAS  Google Scholar 

  • Eastlake K, Banerjee PJ, Angbohang A et al (2016) Müller glia as an important source of cytokines and inflammatory factors present in the gliotic retina during proliferative vitreoretinopathy. Glia 64(4):495–506

    Article  CAS  Google Scholar 

  • Eichler W, Yafai Y, Wiedemann P et al (2004) Angiogenesis-related factors derived from retinal glial (Müller) cells in hypoxia. Neuroreport 15:1633–1637

    Article  CAS  Google Scholar 

  • Ekström P, Sanyal S, Narfström K et al (1988) Accumulation of glial fibrillary acidic protein in Muller radial glia during retinal degeneration. Invest Ophthalmol Vis Sci 29:1363–1371

    PubMed  Google Scholar 

  • Fisher SK, Lewis GP (2003) Müller cell and neuronal remodeling in retinal detachment and reattachment and their potential consequences for visual recovery: a review and reconsideration of recent data. Vis Res 43:887–897

    Article  Google Scholar 

  • Fisher SK, Lewis GP, Linberg KA et al (2005) Cellular effects of detachment and reattachment on the neural retina and the retinal pigment epithelium. Prog Retin Eye Res 24:1991–2012

    Article  Google Scholar 

  • Fu S, Dong S, Zhu M et al (2015) Müller glia are a major cellular source of survival signals for retinal neurons in diabetes. Diabetes 64:3554–3563

    Article  CAS  Google Scholar 

  • Hippert C, Graca AB, Barber AC et al (2015) Müller glia activation in response to inherited retinal degeneration is highly varied and disease-specific. PLoS One 10:e0120415

    Article  Google Scholar 

  • Hippert C, Graca AB, Pearson RA (2016) Gliosis can impede integration following photoreceptor transplantation into the diseased retina. Adv Exp Med Biol 854:579–585

    Article  CAS  Google Scholar 

  • Jünemann AGM, Rejdak R, Huchzermeyer C et al (2015) Elevated vitreous body glial fibrillary acidic protein in retinal diseases. Graefes Arch Clin Exp Ophthalmol 253:2181–2186

    Article  Google Scholar 

  • Kaur C, Sivakumar V, Yong Z et al (2007) Blood-retinal barrier disruption and ultrastructural changes in the hypoxic retina in adult rats: the beneficial effect of melatonin administration. J Pathol 212:429–439

    Article  CAS  Google Scholar 

  • Kim IB, Kim KY, Joo CK et al (1998) Reaction of Müller cells after increased intraocular pressure in the rat retina. Exp Brain Res 121:419–424

    Article  CAS  Google Scholar 

  • Lebrun-Julien F, Duplan L, Pernet V et al (2009) Excitotoxic death of retinal neurons in vivo occurs via a non-cell-autonomous mechanism. J Neurosci 29:5536–5545

    Article  CAS  Google Scholar 

  • Lee E-J, Ji Y, Zhu CL et al (2011) Role of Müller cells in cone mosaic rearrangement in a rat model of retinitis pigmentosa. Glia 59:1107–1117

    Article  Google Scholar 

  • Lewis GP, Fisher SK (2003) Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol 230:263–290

    Article  CAS  Google Scholar 

  • Lewis GP, Fisher SK (2006) Retinal plasticity and interactive cellular remodeling in retinal detachment and reattachment. Plast Vis Syst 55–78

    Google Scholar 

  • Linberg KA, Sakai T, Lewis GP et al (2002) Experimental retinal detachment in the cone-dominant ground squirrel retina: morphology and basic immunocytochemistry. Vis Neurosci 19:603–619

    Article  Google Scholar 

  • Lu Y-B, Iandiev I, Hollborn M et al (2011) Reactive glial cells: increased stiffness correlates with increased intermediate filament expression. FASEB J 25:624–631

    Article  CAS  Google Scholar 

  • Lu Y-B, Pannicke T, Wei E-Q et al (2013) Biomechanical properties of retinal glial cells: comparative and developmental data. Exp Eye Res 113:60–65

    Article  CAS  Google Scholar 

  • Luna G, Lewis GP, Banna CD et al (2010) Expression profiles of nestin and synemin in reactive astrocytes and Müller cells following retinal injury: a comparison with glial fibrillar acidic protein and vimentin. Mol Vis 16:2511–2523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundkvist A, Reichenbach A, Betsholtz C et al (2004) Under stress, the absence of intermediate filaments from Müller cells in the retina has structural and functional consequences. J Cell Sci 117:3481–3488

    Article  CAS  Google Scholar 

  • Merriman DK, Sajdak BS, Li W et al (2016) Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. Exp Eye Res 150:90–105

    Article  CAS  Google Scholar 

  • Nakazawa T, Takeda M, Lewis GP et al (2007) Attenuated glial reactions and photoreceptor degeneration after retinal detachment in mice deficient in glial fibrillary acidic protein and vimentin. Invest Ophthalmol Vis Sci 48:2760–2768

    Article  Google Scholar 

  • Pardue MT, Stubbs EB, Perlman JI et al (2001) Immunohistochemical studies of the retina following long-term implantation with subretinal microphotodiode arrays. Exp Eye Res 73:333–343

    Article  CAS  Google Scholar 

  • Pearson RA, Gonzalez-Cordero A, West EL et al (2016) Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun 7:13029

    Article  CAS  Google Scholar 

  • Pease ME, Zack DJ, Berlinicke C et al (2009) Effect of CNTF on retinal ganglion cell survival in experimental glaucoma. Invest Ophthalmol Vis Sci 50:2194–2200

    Article  Google Scholar 

  • Peng YW, Zallocchi M, Meehan DT et al (2008) Progressive morphological and functional defects in retinas from alpha1 integrin-null mice. Invest Ophthalmol Vis Sci 49:4647–4654

    Article  Google Scholar 

  • Radtke ND, Aramant RB, Seiler M et al (1999) Preliminary report: indications of improved visual function after retinal sheet transplantation in retinitis pigmentosa patients. Am J Ophthalmol 128:384–387

    Article  CAS  Google Scholar 

  • Ridet JL, Malhotra SK, Privat A et al (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  Google Scholar 

  • Santos-Ferreira T, Llonch S, Borsch O et al (2016) Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat Commun 7:13028

    Article  CAS  Google Scholar 

  • Sarthy V, Egal H (1995) Transient induction of the glial intermediate filament protein gene in Müller cells in the mouse retina. DNA Cell Biol 14:313–320

    Article  CAS  Google Scholar 

  • Seoane A, Espejo M, Pallàs M et al (1999) Degeneration and gliosis in rat retina and central nervous system following 3,3′-iminodipropionitrile exposure. Brain Res 833:258–271

    Article  CAS  Google Scholar 

  • Wang M, Ma W, Zhao L et al (2011) Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 8:173

    Article  CAS  Google Scholar 

  • Xue LP, Lu J, Cao Q et al (2006) Müller glial cells express nestin coupled with glial fibrillary acidic protein in experimentally induced glaucoma in the rat retina. Neuroscience 139:723–732

    Article  CAS  Google Scholar 

  • Yafai Y, Iandiev I, Wiedemann P et al (2004) Retinal endothelial angiogenic activity: effects of hypoxia and glial (Müller) cells. Microcirculation 11:577–586

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna B. Graca or Rachael A. Pearson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Graca, A.B., Hippert, C., Pearson, R.A. (2018). Müller Glia Reactivity and Development of Gliosis in Response to Pathological Conditions. In: Ash, J., Anderson, R., LaVail, M., Bowes Rickman, C., Hollyfield, J., Grimm, C. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 1074. Springer, Cham. https://doi.org/10.1007/978-3-319-75402-4_37

Download citation

Publish with us

Policies and ethics