Skip to main content

Low Frequency Raman Scattering of Two-Dimensional Materials Beyond Graphene

  • Chapter
  • First Online:
Confocal Raman Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 66))

  • 3510 Accesses

Abstract

Two-dimensional (2D ) materials beyond graphene are undergoing intense study owing to their remarkable electronic and optical properties. This chapter is mainly devoted to Raman scattering measurements of 2D transition metal dichalcogenides (TMD). The similarities and differences in terms of phonon structure of monolayer and bulk MX\(_\text {2}\) are discussed. Layer-dependent Raman characteristics of monolayer and few-layer MoS\(_\text {2}\) could be obtained with both high and low frequency detection. The effect of uniaxial strain on the Raman spectrum of monolayer MoS\(_\text {2}\) is demonstrated. The stacking order and interlayer van der Waals (vdWs) interaction in few-layer TMD materials could be identified by low frequency (LF) Raman spectrum and imaging (\(\sim \)10 rel. cm\(^{-1}\)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6(3), 147 (2011)

    Article  ADS  Google Scholar 

  2. A.K. Geim, I.V. Grigorieva, Nature 499(7459), 419 (2013)

    Article  Google Scholar 

  3. M. Eginligil, B. Cao, Z. Wang, X. Shen, C. Cong, J. Shang, C. Soci, T. Yu, Nat. Commun. 6 (2015)

    Google Scholar 

  4. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, M. Chhowalla, Nano Lett. 11(12), 5111 (2011)

    Article  ADS  Google Scholar 

  5. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang et al., ACS Nano 8(6), 5738 (2014)

    Article  Google Scholar 

  6. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano Lett. 10(4), 1271 (2010)

    Article  ADS  Google Scholar 

  7. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith et al., Science 331(6017), 568 (2011)

    Article  ADS  Google Scholar 

  8. Y.H. Lee, X.Q. Zhang, W. Zhang, M.T. Chang, C.T. Lin, K.D. Chang, Y.C. Yu, J.T.W. Wang, C.S. Chang, L.J. Li et al., Adv. Mater. 24(17), 2320 (2012)

    Article  Google Scholar 

  9. C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, T. Yu, Adv. Opt. Mater. 2(2), 131 (2014)

    Article  Google Scholar 

  10. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  11. J. Kang, S. Tongay, J. Zhou, J. Li, J. Wu, Appl. Phys. Lett. 102(1), 012111 (2013)

    Article  ADS  Google Scholar 

  12. L. Malard, M. Pimenta, G. Dresselhaus, M. Dresselhaus, Phys. Rep. 473(5), 51 (2009)

    Article  ADS  Google Scholar 

  13. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4(5), 2695 (2010)

    Article  Google Scholar 

  14. X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A. Ferrari, P. Tan, Phys. Rev. B 87(11), 115413 (2013)

    Article  ADS  Google Scholar 

  15. W. Zhao, Z. Ghorannevis, K.K. Amara, J.R. Pang, M. Toh, X. Zhang, C. Kloc, P.H. Tan, G. Eda, Nanoscale 5(20), 9677 (2013)

    Article  ADS  Google Scholar 

  16. Y. Wang, C. Cong, C. Qiu, T. Yu, Small 9(17), 2857 (2013)

    Article  Google Scholar 

  17. J. Yan, J. Xia, X. Wang, L. Liu, J.L. Kuo, B.K. Tay, S. Chen, W. Zhou, Z. Liu, Z.X. Shen, Nano Lett. 15(12), 8155 (2015)

    Article  ADS  Google Scholar 

  18. X. Lu, M. Utama, J. Lin, X. Luo, Y. Zhao, J. Zhang, S.T. Pantelides, W. Zhou, S.Y. Quek, Q. Xiong, Adv. Mater. 27(30), 4502 (2015)

    Article  Google Scholar 

  19. A. Molina-Sanchez, L. Wirtz, Phys. Rev. B 84(15), 155413 (2011)

    Article  ADS  Google Scholar 

  20. C. Ataca, M. Topsakal, E. Akturk, S. Ciraci, The J. Phys. Chem. C 115(33), 16354 (2011)

    Article  Google Scholar 

  21. N. Wakabayashi, H. Smith, R. Nicklow, Phys. Rev. B 12(2), 659 (1975)

    Article  ADS  Google Scholar 

  22. Y. Zhao, X. Luo, H. Li, J. Zhang, P.T. Araujo, C.K. Gan, J. Wu, H. Zhang, S.Y. Quek, M.S. Dresselhaus et al., Nano Lett. 13(3), 1007 (2013)

    Article  ADS  Google Scholar 

  23. A. Berkdemir, H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.I. Chia, B. Wang, V.H. Crespi, F. López-Urías, J.C. Charlier, et al., Sci. Rep. 3 (2013)

    Google Scholar 

  24. X. Lu, M.I.B. Utama, J. Lin, X. Gong, J. Zhang, Y. Zhao, S.T. Pantelides, J. Wang, Z. Dong, Z. Liu et al., Nano Lett. 14(5), 2419 (2014)

    Article  ADS  Google Scholar 

  25. S. Lebedkin, C. Blum, N. Stürzl, F. Hennrich, M.M. Kappes, Rev. Sci. Instrum. 82(1), 013705 (2011)

    Article  ADS  Google Scholar 

  26. C. Cong, T. Yu, Nat. Commun. 5 (2014)

    Google Scholar 

  27. P. Tan, W. Han, W. Zhao, Z. Wu, K. Chang, H. Wang, Y. Wang, N. Bonini, N. Marzari, N. Pugno et al., Nat. Mater. 11(4), 294 (2012)

    Article  ADS  Google Scholar 

  28. K. Brown, S. Erfurth, E. Small, W. Peticolas, Proc. Nat. Acad. Sci. 69(6), 1467 (1972)

    Article  ADS  Google Scholar 

  29. C. Maiti, L. Bera, S. Chattopadhyay, Semicond. Sci. Technol. 13(11), 1225 (1998)

    Article  ADS  Google Scholar 

  30. Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, Z.X. Shen, ACS Nano 2(11), 2301 (2008)

    Article  Google Scholar 

  31. C.H. Chang, X. Fan, S.H. Lin, J.L. Kuo, Phys. Rev. B 88(19), 195420 (2013)

    Article  ADS  Google Scholar 

  32. T. Mohiuddin, A. Lombardo, R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D. Basko, C. Galiotis, N. Marzari et al., Phys. Rev. B 79(20), 205433 (2009)

    Article  ADS  Google Scholar 

  33. A.F. Morpurgo, Nat. Phys. 11(8), 625 (2015)

    Article  Google Scholar 

  34. Y. Wang, Z. Ni, L. Liu, Y. Liu, C. Cong, T. Yu, X. Wang, D. Shen, Z. Shen, ACS Nano 4(7), 4074 (2010)

    Article  Google Scholar 

  35. J.B. Wu, Z.X. Hu, X. Zhang, W.P. Han, Y. Lu, W. Shi, X.F. Qiao, M. Ijiäs, S. Milana, W. Ji et al., ACS Nano 9(7), 7440 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author wants to thank Dr. Yan Jiaxu, Prof. Cong Chunxiao, Dr. Wang Yanlong Dr. Shang Jinzhi and Xia Juan for their assistance with the schematic diagrams and experimental data. The MoS\(_\text {2}\) sample for LF Raman mapping was provided by Dr. Sun Linfeng.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hu, H., Shen, Z.X., Yu, T. (2018). Low Frequency Raman Scattering of Two-Dimensional Materials Beyond Graphene. In: Toporski, J., Dieing, T., Hollricher, O. (eds) Confocal Raman Microscopy. Springer Series in Surface Sciences, vol 66. Springer, Cham. https://doi.org/10.1007/978-3-319-75380-5_9

Download citation

Publish with us

Policies and ethics