Recovery of Lead and Zinc from Fine Dust of the Copper Smelting Industry Using a Chelating Agent

  • S. Mamyachenkov
  • O. Anisimova
  • E. Kolmachikhina
Chapter
Part of the Innovation and Discovery in Russian Science and Engineering book series (IDRSE)

Abstract

This paper is devoted to the investigation of fine dust hydrometallurgical treatment by a new reagent – oxyethylidenediphosphonic acid, commonly known as OEDP. Dust leaching tests were made following an experimental design plan. Varied experimental parameters included liquid-to-solid ratio (X1) from 3 to 7 and process temperature (X2) from 25 °C to 80 °C. Extraction of lead (main component), zinc, copper, and iron has been monitored during the tests. Response surfaces for leaching optimization were designed using STATISTICA 7.0 software. These planes describe temperature and liquid-to-solid ratio dependences of lead, zinc, copper, and iron extraction in media. Optimal parameters were specified for alkaline leaching of lead and zinc from fine dust of copper smelting plants. These parameters are initial concentration of OEDP 1.5 mol/l, pH 11–12, l:s = 5:1, and temperature 30–50 °C. At these conditions, the extraction was Pb 96–98%, Zn 15–20%, Fe 1–3%, and Cu 0.05–0.1%.

Keywords

Fine dust Lead Impurities Oxyethylidenediphosphonic acid Leaching Optimization 

References

  1. 1.
    Gorelkin, S. S., Rastorguev, L. N., & Skakov, Y. A. (1970). Rentgenograficheskij i ehlektronnoopticheskij analiz (pp. 245–250). Moskva: Metallurgiya.Google Scholar
  2. 2.
    Smirnov, M. P., Sorokina, V. S., & Gerasimov, R. A. (1996). Organizaciya ehkologicheski chistogo gidroehlektrohimicheskogo proizvodstva svinca iz vtorichnogo syr’ya v rossii. Tsvetnye Metally, 9, 13–17.Google Scholar
  3. 3.
    Antrekowitsch, J., & Antrekowitsch, H. (2011). Hydrometallurgically recovering zinc from electric arc furnace dust. JOM, 53(12), 26–28.CrossRefGoogle Scholar
  4. 4.
    Karelov, S. V., Mamyachenkov, S. V., & Nabojchenko, S. S. (1996). Kompleksnaya pererabotka cink- i svinecsoderzhashchih pylej predpriyatij cvetnoj metallurgii (pp. 21–23). Moskva: CNIIIcvetmet ehkonomiki i informm.Google Scholar
  5. 5.
    Antipov, N. I., Maslov, V. I., & Litvinov, V. P. (1983). Kombinirovannaya skhema pererabotki tonkih konverternyh pylej medeplavil’nogo proizvodstva. Tsvetnye Metally, 12, 12–13.Google Scholar
  6. 6.
    Glazkov, E. N., & Antonov, A. S. (1963). Gidrometallurgicheskaya pererabotka svincovyh produktov metodom aminnogo vyshchelachivaniya. Tsvetnye Metally, 12, 28–32.Google Scholar
  7. 7.
    Bakhtiar, F., Atashi, H., Zivdar, M., & Seyed Bagheri, S. A. (2008). Continuous copper recovery from a smelter’s dust in stirred tank reactors. International Journal of Mineral Processing, 86, 50–57.CrossRefGoogle Scholar
  8. 8.
    Dyatlova, N. M., Temkina, V. Y., & Popov, K. I. (1998). Kompleksony i kompleksonaty metallov (pp. 115–117). Moskva: Himiya.Google Scholar
  9. 9.
    Kabachnik, M. I., Lastovskij, R. P., & Medved’, T. Y. (1967). O kompleksoobrazuyushchih svojstvah oksiehtilidendifosfonovoj kisloty v vodnyh rastvorah. Doklady AN SSSR, 3(177), 582–585.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • S. Mamyachenkov
    • 1
  • O. Anisimova
    • 1
  • E. Kolmachikhina
    • 1
  1. 1.Institute of New Materials and TechnologiesUral Federal UniversityYekaterinburgRussia

Personalised recommendations