Advertisement

Morembs—A Model Order Reduction Package for Elastic Multibody Systems and Beyond

  • Jörg Fehr
  • Dennis Grunert
  • Philip Holzwarth
  • Benjamin Fröhlich
  • Nadine Walker
  • Peter Eberhard
Chapter

Abstract

Many new promising model order reduction (MOR) methods and algorithms were developed during the last decade. Industry and academic research institutions intend to test, validate, compare, and use these new promising MOR techniques with their own models. Therefore, an MOR toolbox bridging the gap between theoretical, algorithmic, and numerical developments to an end-user-oriented program, usable by non-experts, was developed called ‘Model Order Reduction of Elastic Multibody Systems’ (Morembs). A C++ implementation as well as a Matlab implementation including an intuitive graphical user interface is available. Import from various FE programs is possible, and the reduced elastic bodies can be exported to a variety of programs to simulate the compact models. In the course of the various projects, many improvements on the algorithmic side were added. As we learned over the years, there is not one ‘optimal’ MOR method. ‘Optimal’ MOR depends on circumstances, like boundary conditions, excitation spectra, further model usage. The toolbox is now used, e.g., in solid mechanics, biomechanics, vehicle dynamics, control of flexible structures, or crash simulations. In all these use cases, the toolbox allows the user to facilitate their well-known modeling and simulation environment. Only the critical MOR process during preprocessing is performed with Morembs, which helps to compare the various MOR techniques to find the most suited one.

Notes

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart, the support of this research work within the project EB 195/11-1, FE 1583/2-1, Ei 231/6-1, the FVV (Forschungsvereinigung Verbrennungskraftmaschinen e.V.) with its working groups ‘Optimale FE Reduktion’ and the Automotive Simulation Center Stuttgart (ASCS) for providing partially the funding for this research.

References

  1. 1.
    Tobias, C., Fehr, J., Eberhard, P.: Durability-based structural optimization with reduced elastic multibody systems. In: Proceedings of the 2nd International Conference on Engineering Optimization, Paper-ID 1119, Lisbon, Portugal, 6–9 Sept 2010Google Scholar
  2. 2.
    Antoulas, A.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)CrossRefGoogle Scholar
  3. 3.
    Benner, P., Mehrmann, V., Sorensen, D. (eds.): Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin (2005)Google Scholar
  4. 4.
    Schilders, W., van der Vorst, H., Rommes, J. (eds.): Model Order Reduction: Theory, Research Aspects and Applications. Mathematics in Industry, vol. 13. Springer, Berlin (2008)zbMATHGoogle Scholar
  5. 5.
    Fehr, J.: Automated and error-controlled model reduction in elastic multibody systems. Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 21. Shaker Verlag, Aachen (2011)Google Scholar
  6. 6.
    Holzwarth, P., Eberhard, P.: Interpolation and truncation model reduction techniques in coupled elastic multibody systems. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain (2015)Google Scholar
  7. 7.
    Schwertassek, R., Wallrapp, O.: Dynamik Flexibler Mehrkörpersysteme (in German). Vieweg, Braunschweig (1999)CrossRefGoogle Scholar
  8. 8.
    Volzer, T., Eberhard, P.: Arch. Mech. Eng. 63(4) (2016)Google Scholar
  9. 9.
    Wallrapp, O.: Standardization of flexible body modeling in multibody system codes. Part I: definition of standard input data. Mech. Struct. Mach. 22(3), 283–304 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tobias, C., Matha, D., Eberhard, P.: Durability-based data reduction for multibody system results and its applications. Euromech Newsl. 40, 15–24 (2011)Google Scholar
  11. 11.
    Tobias, C.: Schädigungsberechnung in elastischen Mehrkörpersystemen (in German). Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 24. Shaker Verlag, Aachen (2012)Google Scholar
  12. 12.
    Wengert, N.: Gekoppelte dynamisch-optische Simulation von Hochleistungsobjektiven (in German). Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 40. Shaker Verlag, Aachen (2015)Google Scholar
  13. 13.
    Hanss, M., Walz, N.P.: Software FAMOUS. Universität Stuttgart, Institut für Technische und Numerische Mechanik (2015). http://www.itm.uni-stuttgart.de/research/famous. Accessed 08 May 2017
  14. 14.
    Iroz, I., Hanss, M., Eberhard, P.: Simulation of friction-induced vibrations using elastic multibody models. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain (2015)Google Scholar
  15. 15.
    Antoulas, A.C.: On Pole Placement in Model Reduction, at -. Automatisierungstechnik 55(9), 443–448 (2007)Google Scholar
  16. 16.
    Fehr, J., Fischer, M., Haasdonk, B., Eberhard, P.: Greedy-based approximation of frequency-weighted gramian matrices for model reduction in multibody dynamics. Zeitschrift für Angewandte Math. Mech. 93(8), 501–519 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Gugercin, S., Antoulas, A.C., Beattie, C.A.: \(\cal{H}_2\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Panzer, H.K.F.: Model order reduction by Krylov subspace methods with global error bounds and automatic choice of parameters. Dissertation, Technische Universität München. Verlag Dr. Hut, München (2014)Google Scholar
  19. 19.
    Craig, R.: Coupling of substructures for dynamic analyses: an overview. In: Proceedings of the AIAA Dynamics Specialists Conference, Atlanta (2000)Google Scholar
  20. 20.
    Holzwarth, P., Eberhard, P.: Interface reduction for CMS methods and alternative model order reduction. In: Proceedings of the MATHMOD 2015–8th Vienna International Conference on Mathematical Modelling, Vienna, Austria (2015)CrossRefGoogle Scholar
  21. 21.
    Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Panzer, H., Mohring, J., Eid, R., Lohmann, B.: Parametric model order reduction by matrix interpolation, at -. Automatisierungstechnik 58(8), 475–484 (2010)Google Scholar
  23. 23.
    Amsallem, D., Farhat, C.: An online method for interpolating linear parametric reduced-order models. SIAM J. Sci. Comput. 33, 2169–2198 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Baur, U., Beattie, C., Benner, P., Gugercin, S.: Interpolatory projection methods for parameterized model reduction. SIAM J. Sci. Comput. 33, 2489–2518 (2009)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Wyatt, S.: Issues in interpolatory model reduction: inexact solves, second-order systems and DAEs. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, 2012Google Scholar
  26. 26.
    Fischer, M., Eberhard, P.: Simulation of moving loads in elastic multibody systems with parametric model reduction techniques. Arch. Mech. Eng. 61(2), 209–226 (2014)CrossRefGoogle Scholar
  27. 27.
    Fischer, M., Eberhard, P.: Application of parametric model reduction with matrix interpolation for simulation of moving loads in elastic multibody systems. Adv. Comput. Math., 1–24 (2014)Google Scholar
  28. 28.
    Baumann, M.: Parametrische Modellreduktion in elastischen Mehrkörpersystemen (in German). Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 43. Shaker Verlag, Aachen (2016)Google Scholar
  29. 29.
    Haasdonk, B., Ohlberger, M.: Efficient reduced models and a-posteriori error estimation for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst. 17(2), 145–161 (2011)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Ruiner, T., Fehr, J., Haasdonk, B., Eberhard, P.: A-posteriori error estimation for second order mechanical systems. Acta Mech. Sin. 28(3), 854–862 (2012)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Nowakowski, C.: Zur Modellierung und Reduktion elastischer Bauteile unter verteilten Lasten für die Mehrkörpersimulation (in German). Dissertation, Schriften aus dem Institut für Technische und Numerische Mechanik der Universität Stuttgart, vol. 35. Shaker Verlag, Aachen (2014)Google Scholar
  32. 32.
    Nowakowski, C., Fehr, J., Eberhard, P.: Einfluss von Schnittstellenmodellierungen bei der Reduktion elastischer Mehrkörpersysteme (in German), at -. Automatisierungstechnik 59(8), 512–519 (2011)CrossRefGoogle Scholar
  33. 33.
    Fehr, J., Holzwarth, P., Eberhard, P.: Interface and model reduction for efficient explicit simulations - a case study with nonlinear vehicle crash models. Math. Comput. Model. Dyn. Syst. 22(4), 380–396 (2016)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Ihrle, S., Lauxmann, M., Eiber, A., Eberhard, P.: Nonlinear modelling of the middle ear as an elastic multibody system-applying model order reduction to acousto-structural coupled systems. J. Comput. Appl. Math. 246, 18–26 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ihrle, S., Eiber, A., Eberhard, P.: Modeling of the incudo-malleolar joint within a biomechanical model of the human ear. Multibody Syst. Dyn. 39(4), 1–20 (2016)zbMATHGoogle Scholar
  36. 36.
    Simpack, A.G.: Multibody simulation software (2017). http://www.simpack.com/. Accessed 08 May 2017
  37. 37.
    FIRST, Simulationstool für elasto-hydrodynamisch gekoppelte Mehrkörpersysteme (in German). IST Ingenieurgesellschaft für Strukturanalyse und Tribologie mb. http://www.ist-aachen.de/first. Accessed 08 May 2017
  38. 38.
    Nowakowski, C., Fehr, J., Eberhard, P.: Model reduction for a crankshaft used in coupled simulations of engines. In: Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2011, Brussels, Belgium (2011)Google Scholar
  39. 39.
    Shiiba, T., Fehr, J., Eberhard, P.: Flexible multibody simulation of automotive systems with non-modal model reduction techniques. Veh. Syst. Dyn. 50(12), 1905–1922 (2012)CrossRefGoogle Scholar
  40. 40.
    Grunert, D., Fehr, J.: Identification of nonlinear behavior with clustering techniques in car crash simulations for better model reduction. Adv. Model. Simul. Eng. Sci. 3(1), 1–19 (2016)Google Scholar
  41. 41.
    Bohn, B., Garcke, J., Iza-Teran, R., Paprotny, A., Peherstorfer, B., Schepsmeier, U., Thole, C.A.: Analysis of car crash simulation data with nonlinear machine learning methods. Procedia Comput. Sci. 18, 621–630 (2013)CrossRefGoogle Scholar
  42. 42.
    Holzwarth, P., Eberhard, P.: Input-output based model reduction for interconnected systems. Eur. J. Mech. A/Solids 49, 408–418 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jörg Fehr
    • 1
  • Dennis Grunert
    • 1
  • Philip Holzwarth
    • 1
  • Benjamin Fröhlich
    • 1
  • Nadine Walker
    • 1
  • Peter Eberhard
    • 1
  1. 1.Institute of Engineering and Computational MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations