Advertisement

Model Order Reduction for Rotating Electrical Machines

  • Zeger Bontinck
  • Oliver Lass
  • Oliver Rain
  • Sebastian Schöps
Chapter

Abstract

The simulation of electric rotating machines is both computationally expensive and memory intensive. To overcome these costs, model order reduction techniques can be applied. The focus of this contribution is especially on machines that contain non-symmetric components. These are usually introduced during the mass production process and are modeled by small perturbations in the geometry (e.g., eccentricity) or the material parameters. While model order reduction for symmetric machines is clear and does not need special treatment, the non-symmetric setting adds additional challenges. An adaptive strategy based on proper orthogonal decomposition is developed to overcome these difficulties. Equipped with an a posteriori error estimator, the obtained solution is certified. Numerical examples are presented to demonstrate the effectiveness of the proposed method.

Notes

Acknowledgements

This work is supported by the German BMBF in the context of the SIMUROM project (grant number 05M2013), by the Excellence Initiative of the German Federal and State Governments, and by the Graduate School of Computational Engineering at TU Darmstadt.

References

  1. 1.
    Antil, H., Heinkenschloss, M., Hoppe, R.H.W.: Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Method Softw. 26(4–5), 643–669 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique 339(9), 667–672 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chatterjee, A.: An introduction to the proper orthogonal decomposition. Curr. Sci. 78, 539–575 (2000)Google Scholar
  4. 4.
    Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Clénet, S.: Uncertainty quantification in computational electromagnetics: The stochastic approach. ICS Newslett. 20(1), 2–12 (2013)Google Scholar
  6. 6.
    Davat, B., Ren, Z., Lajoie-Mazenc, M.: The movement in field modelling. IEEE Trans. Mag. 21(6), 2296–2298 (1985)CrossRefGoogle Scholar
  7. 7.
    Dihlmann, M., Haasdonk, B.: Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput. Optim. Appl. 60, 753–787 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gubisch, M., Volkwein, S.: Proper orthogonal decomposition for linear-quadratic optimal control. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms (2017, to appear)CrossRefGoogle Scholar
  9. 9.
    Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: M2AN. 42(2), 277–302 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Henneron, T., Clénet, S.: Model order reduction applied to the numerical study of electrical motor based on POD method taking into account rotation movement. Int. J. Numer. Model. 27(3), 1099–1204 (2014)CrossRefGoogle Scholar
  11. 11.
    Holmes, P., Lumley, J.L., Berkooz, G., Rowley, C.W.: Turbulence, Coherent Structures Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  12. 12.
    Heinkenschloss, M., Sorensen, D.C., Sun, K.: Balanced truncation model reduction for a class of descriptor systems with application to the Oseen eqaution. SIAM J. Sci. Comp. 30(2), 1038–1063 (2008)CrossRefGoogle Scholar
  13. 13.
    Kunisch, K., Volkwein, S.: Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90, 117–148 (2001)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Lass, O., Ulbrich, S.: Model order reduction techniques with a posteriori error control for nonlinear robust optimization governed by partial differential equations. SIAM J. Sci. Comput (2017, to appear)Google Scholar
  15. 15.
    Lass, O., Volkwein, S.: POD Galerkin schemes for nonlinear elliptic-parabolic systems. SIAM J. Sci. Comput. 35(3), A1217–A1298 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Lass, O., Volkwein, S.: Parameter identification for nonlinear elliptic-parabolic systems with application in lithium-ion battery modeling. Comput. Optim. Appl. 62, 217–239 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, United Kingdom (2003)CrossRefGoogle Scholar
  18. 18.
    Montier, L., Henneron, T., Clénet, S., Goursaud, B.: Transient simulation of an electrical rotating machine achieved through model order reduction. Adv. Model. Simul. Eng. Sci. 3(1), 1–17 (2016)CrossRefGoogle Scholar
  19. 19.
    Negri, F., Rozza, G., Manzoni, A., Quateroni, A.: Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35(5), A2316–A2340 (2013)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Offermann, P., Hameyer, K.: A polynomial chaos meta-model for non-linear stochastic magnet variations. COMPEL 32(4), 1211–1218 (2013)CrossRefGoogle Scholar
  21. 21.
    Offermann, P., Mac, H., Nguyen, T.T., Clénet, S., De Gersem, H., Hameyer, K.: Uncertainty quantification and sensitivity analysis in electrical machines with stochastically varying machine parameters. IEEE Trans. Mag. 51(3), 1–4 (2015)CrossRefGoogle Scholar
  22. 22.
    Patera, A.T., Rozza, G.: Reduced Basis Approximation and A Posteriori Error Estimator for Parameterrametrized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering, Boston (2006)Google Scholar
  23. 23.
    Perrin-Bit, R., Coulomb, J.L.: A three dimensional finite element mash connection for problems involving movement. IEEE Trans. Mag. 24(3), 1920–1923 (1995)CrossRefGoogle Scholar
  24. 24.
    Preston, T.W., Reece, A.B.J., Sangha, P.S.: Induction motor analysis by time-stepping techniques. IEEE Trans. Mag. 24(1), 471–474 (1988)CrossRefGoogle Scholar
  25. 25.
    Qian, E., Grepl, M., Veroy, K., Willcox, K.: A certified trust region reduced basis approach to PDE-constrained optimization. SIAM J. Sci. Comput (2017, to appear)Google Scholar
  26. 26.
    Quarteroni, A., Manzoni, A., Negri, F.: Reduced Basis Methods for Partial Differential Equations. Springer, Switzerland (2016)CrossRefGoogle Scholar
  27. 27.
    Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15, 229–275 (2008)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Salon, S.J.: Finite Element Analysis of Electrical Machines. Kluwer, USA (1995)CrossRefGoogle Scholar
  29. 29.
    Shi, X., Le Menach, Y., Ducreux, J.P., Piriou, F.: Comparison of slip surface and moving band techniques for modelling movement in 3D with FEM. COMPEL 25(1), 17–30 (2006)CrossRefGoogle Scholar
  30. 30.
    Shimotani, T., Sato, Y., Sato, T., Igarashi, H.: Fast finite-element analysis of motors using block model order reduction. IEEE Trans. Mag. 52(3), 1–4 (2016)Google Scholar
  31. 31.
    Sirovich, L.: Turbulence and the dynamics of coherent structures. Quart. Appl. Math. 45(3), 561–590 (1987)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory. Springer, Berlin (2005)CrossRefGoogle Scholar
  33. 33.
    Zahr, M.J., Farhat, C.: Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Int. J. Numer. Methods Eng. 102, 1111–1135 (2015)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zeger Bontinck
    • 1
  • Oliver Lass
    • 2
  • Oliver Rain
    • 3
  • Sebastian Schöps
    • 1
  1. 1.Technische Universität Darmstadt, Graduate School of Computational EngineeringDarmstadtGermany
  2. 2.Department of Mathematics, Chair of Nonlinear OptimizationTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Robert Bosch GmbHStuttgartGermany

Personalised recommendations