Ejector CFD Modeling

  • Giuseppe Grazzini
  • Adriano Milazzo
  • Federico Mazzelli
Chapter

Abstract

The prediction of the supersonic ejector dynamics implies the accurate description of all the complex flow features discussed in Chap. 2. Unfortunately, the theoretical modeling approach necessitates a number of simplifying assumptions and empirical constants that introduce significant uncertainty and reduce the capability of capturing a number of relevant flow features. In this respect, computational fluid dynamics may represent a tool to overcome these difficulties and analyze the flow details of arbitrary ejector geometries.

In this chapter, we will try to overview some of the main features that should be considered in order to set up a reliable CFD scheme for ejector flow studies.

Keywords

CFD Single-phase ejectors Turbulence modeling Two-phase ejectors Non-equilibrium condensation Wet steam CFD validation 

References

  1. Adams, T., Grant, C., & Watson, H. (2012). A simple algorithm to relate measured surface roughness to equivalent sand-grain roughness. International Journal of Mechanical and Mechatronics Engineering, 1, 66–71.Google Scholar
  2. Al-Doori, G. (2013). Investigation of refrigeration system steam ejector performance through experiments and computational simulations. s.l.:Ph.D. thesis, University of Southern Queensland.Google Scholar
  3. ANSYS Inc. (2016). ANSYS fluent theory guide. Canonsburg, release 18.0.Google Scholar
  4. Ariafar, K., Buttsworth, D., & Al-Doori, G. (2015). Effect of mixing on the performance of wet steam ejectors. Energy, 93, 2030–2041.CrossRefGoogle Scholar
  5. Bartosiewicz, Y., Aidoun, Z., Desevaux, P., & Mercadier, Y. (2005). Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow, 26, 56–70.CrossRefGoogle Scholar
  6. Besagni, G., & Inzoli, F. (2017). Computational fluid-dynamics modeling of supersonic ejectors: Screening of turbulence modeling approaches. Applied Thermal Engineering, 117, 122–144.CrossRefGoogle Scholar
  7. Bouhanguel, A., Desevaux, P., & Gavignet, E. (2009). 3D CFD simulation of a supersonic air ejector. International seminar on ejector/jet-pump technology and application, Louvain-la-Neuve.Google Scholar
  8. Brennen, C. (1995). Cavitation and bubble dynamics. s.l.: Oxford University Press.MATHGoogle Scholar
  9. Cardemil, J., & Colle, S. (2012). A general model for evaluation of vapor ejectors performance for application in refrigeration. Energy Conversion and Management, 64, 79–86.CrossRefGoogle Scholar
  10. Chunnanond, K., & Aphornratana, S. (2004). An experimental investigation of a steam ejector. Applied Thermal Engineering, 24, 311–322.CrossRefGoogle Scholar
  11. Dykas, S., & Wróblewski, W. (2011). Single- and two-fluid models for steam condensing flow modeling. International Journal of Multiphase Flow, 37, 1245–1253.CrossRefGoogle Scholar
  12. Dykas, S., & Wróblewski, W. (2013). Two-fluid model for prediction of wet steam transonic flow. International Journal of Heat and Mass Transfer, 60, 88–94.CrossRefGoogle Scholar
  13. ESDU. (1986). Ejectors and jet pumps, data item 86030. London: ESDU International Ltd.Google Scholar
  14. García del Valle, J., Sierra-Pallares, J., Garcia Carrascal, P., & Castro Ruiz, F. (2015). An experimental and computational study of the flow pattern in a refrigerant ejector. Validation of turbulence models and real-gas effects. Applied Thermal Engineering, 89, 795–781.CrossRefGoogle Scholar
  15. Gerber, A. (2002). Two-phase Eulerian/Lagrangian model for nucleating steam flow. ASME Journal of Fluids Engineering, 124, 465–475.CrossRefGoogle Scholar
  16. Gerber, A. (2008). Inhomogeneous multifluid model for prediction of nonequilibrium phase transition and droplet dynamics. Journal of Fluids Engineering, 130, 031402-1–031402-11.CrossRefGoogle Scholar
  17. Gerber, A., & Kermani, M. (2004). A pressure based Eulerian-Eulerian multiphase model for non-equilibrium condensation in transonic steam flow. International Journal of Heat and Mass Transfer, 47, 2217–2231.CrossRefMATHGoogle Scholar
  18. Gerber, A., et al. (2007). Predictions of non-equilibrium phase transition in a model low-pressure steam turbine. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 221, 825–835.Google Scholar
  19. Giacomelli, F., Biferi, G., Mazzelli, F., & Milazzo, A. (2016). CFD modeling of supersonic condensation inside a steam ejector. Energy Procedia, 101, 1224–1231.CrossRefGoogle Scholar
  20. Hemidi, A., et al. (2009a). CFD analysis of a supersonic air ejector. Part II: Relation between global operation and local flow features. Applied Thermal Engineering, 29, 2990–2998.CrossRefGoogle Scholar
  21. Hemidi, A., et al. (2009b). CFD analysis of a supersonic air ejector. Part I: Experimental validation of single-phase and two-phase operation. Applied Thermal Engineering, 29, 1523–1531.CrossRefGoogle Scholar
  22. Hill, P. G. (1966). Condensation of water vapour during supersonic expansion in nozzles. Journal of Fluid Mechanics, 25(3), 593–620.CrossRefGoogle Scholar
  23. Hirsch, C. (2007). Numerical computation of internal and external flows (Vol. 1, 2nd ed.). Amsterdam: Butterworth-Heinemann, Elsevier.Google Scholar
  24. Hughes, F., Starzmann, J., White, A., & Young, J. B. (2016). A comparison of Modeling techniques for Polydispersed droplet spectra in steam turbines. Journal of Engineering for Gas Turbines and Power, 138, 042603.CrossRefGoogle Scholar
  25. IAPWS. (2011). Thermophysical properties of metastable steam and homogeneous nucleation. s.l.: International Assotiation for the Properties of Water and Steam.Google Scholar
  26. Kantrovitz, A. (1951). Nucleation in very rapid vapour expansions. Journal of Chemical Physics, 19, 1097–1100.CrossRefGoogle Scholar
  27. Keshtiban, I., Belblidia, F. & Webster, M. (2004). Compressible flow solvers for low mach number flows – A review. s.l.: Institute of Non-Newtonian Fluid Mechanics, University of Wales, UK, Report No.: CSR 2-2004.Google Scholar
  28. Launder, B., & Spalding, D. (1972). Lectures in mathematical models of turbulence. London: Academic Press.MATHGoogle Scholar
  29. Lemmon, E., Huber, M. & McLinden, M. (2013). NIST standard reference database 23: Reference fluid thermodynamic and transport properties-REFPROP, Version 9.1. s.l.: National Institute of Standards and Technology.Google Scholar
  30. Mazzelli, F., & Milazzo, A. (2015). Performance analysis of a supersonic ejector cycle. International Journal of Refrigeration, 49, 79–92.CrossRefGoogle Scholar
  31. Mazzelli, F., Little, A. B., Garimella, S., & Bartosiewicz, Y. (2015). Computational and experimental analysis of supersonic air ejector: Turbulence modeling and assessment of 3D effects. International Journal of Heat and Fluid Flow, 56, 305–316.CrossRefGoogle Scholar
  32. Mazzelli, F., et al. (2016). Condensation in supersonic steam ejectors: Comparison of theoretical and numerical models, International Conference on Multiphase Flow, ICMF. Florence, s.n.Google Scholar
  33. Menter, F. R. (1994). Two-equation Eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598–1605.CrossRefGoogle Scholar
  34. Miettinen, A., & Siikonen, T. (2015). Application of pressure- and density-based methods for different flow speed. International Journal for Numerical Methods in Fluids, 79, 243–267.MathSciNetCrossRefGoogle Scholar
  35. Milazzo, A., & Mazzelli, F. (2017). Future perspectives in ejector refrigeration. Applied Thermal Engineering, 121, 344–350.CrossRefGoogle Scholar
  36. Moore, J. G., & Moore, J. (1999). Realizability in two-equation turbulence models. AIAA Paper 99-3779, 1–11.Google Scholar
  37. Oberkampf, W., & Trucano, T. (2002). Verification and validation in computational fluid dynamics. Progress in Aerospace Sciences, 38, 209–272.CrossRefGoogle Scholar
  38. Patankar, S. (1980). Numerical heat transfer and fluid flow. s.l.:Taylor & Francis Group.Google Scholar
  39. Pianthong, K., et al. (2007). Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management, 48(9), 2556–2564.CrossRefGoogle Scholar
  40. Pruppacher, H. R. (1995). A new look at homogeneous ice nucleation in supercooled water drops. Journal of the Atmospheric Sciences, 52, 1924–1933.CrossRefGoogle Scholar
  41. Reynolds, W. (1987). Fundamentals of turbulence for turbulence modeling and simulation. s.l.:Von Karman Institute.Google Scholar
  42. Roache, P. (1997). Quantification of uncertainty in computational fluid dynamics. Annual Review of Fluid Mechanics, 29, 123–160.MathSciNetCrossRefGoogle Scholar
  43. Rodi, W. (1991). Experience with two-layer models combining the k-E model with a one-equation model near the wall, 29th Aerospace Sciences Meeting. Reno, AIAA.Google Scholar
  44. Sarkar, S., & Balakrishnan, L. (1990). Application of a Reynolds-stress turbulence model to the compressible shear layer. s.l.: ICASE Report 90-18NASA CR 182002.Google Scholar
  45. Sasao, Y., et al. (2013). Eulerian-Lagrangian numerical simulation of wet steam flow through multi-stage steam turbine. June 3–7, San Antonio, Texas, USA, Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition.Google Scholar
  46. Shih, T.-H., et al. (1995). A new k-e Eddy viscosity model for high Reynolds number turbulent flows. Computers Fluids, 24(3), 227–238.CrossRefMATHGoogle Scholar
  47. Shu, C.-W. (2009). High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, 51, 82–126.MathSciNetCrossRefMATHGoogle Scholar
  48. Sriveerakul, T., Aphornratana, S., & Chunnanond, K. (2007). Performance prediction of steam ejector using computational fluid: Part 1. Validation of the CFD results. International Journal of Thermal Sciences, 46, 812–822.CrossRefGoogle Scholar
  49. Starzmann, J. & Casey, M. (2010). Non-equilibrium condensation effects on the flow field and the performance of a low pressure steam turbine. June 14–18, Glasgow, UK, Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air.Google Scholar
  50. Starzmann, J., et al. (2016). Results of the international wet steam modelling project. Prague: s.n.Google Scholar
  51. Taylor, J., Carrano, A., & Kandlikar, S. (2006). Characterization of the effect of surface roughness and texture on fluid flow—Past, present, and future. International Journal of Thermal Sciences, 45, 962–968.CrossRefGoogle Scholar
  52. Tennekes, H. & Lumley, J. (1972). A first course in turbulence. s.l.:MIT Press.Google Scholar
  53. Toro, E. (2009). Riemann solvers and numerical methods for fluid dynamics, a practical introduction. Berlin/Heidelberg: Springer.CrossRefMATHGoogle Scholar
  54. Van Leer, B. (1979). Towards the ultimate conservative difference scheme. V: A second order sequel to Godunov’s Method. Journal of Computational Physics, 32, 101–136.CrossRefMATHGoogle Scholar
  55. Wang, X., Lei, H. J., Dong, J. L., & Tu, J. Y. (2012). The spontaneously condensing phenomena in a steam-jet pump and its influence. International Journal of Heat and Mass Transfer, 55, 4682–4687.CrossRefGoogle Scholar
  56. White, A. (2003). A comparison of modelling methods for polydispersed wet-steam flow. International Journal for Numerical Methods in Engineering, 57, 819–834.CrossRefMATHGoogle Scholar
  57. Wilcox, D. (1992). Dilatation–dissipation corrections for advanced turbulence models. AIAA Journal, (11), 2639–2646.Google Scholar
  58. Wilcox, D. (2006). Turbulence Modeling for CFD. La Canada: DCW Industries.Google Scholar
  59. Wolfshtein, M. (1969). The velocity and temperature distribution in one-dimensional flow with turbulence augmentation and pressure gradient. International Journal of Heat and Mass Transfer, 12(3), 301–318.CrossRefGoogle Scholar
  60. Wölk, J., Wyslouzil, B., & Strey, R. (2013). Homogeneous nucleation of water: From vapor to supercooled droplets to ice. AIP Conference Proceedings, 1527, 55–62.CrossRefGoogle Scholar
  61. Wróblewski, W., Dykas, S., & Gepert, A. (2009). Steam condensing flow modeling in turbine channels. International Journal of Multiphase Flow, 35, 498–506.CrossRefGoogle Scholar
  62. Young, J. B. (1982). The spontaneous condensation in supersonic nozzles. PhysicoChemical Hydrodynamics, 3(1), 57–82.Google Scholar
  63. Young, J. B. (1988). An equation of state for steam for Turbomachinery and other flow calculations. Journal of Engineering for Gas Turbines and Power, 110(1), 1–7.CrossRefGoogle Scholar
  64. Young, J. (1992). Two-dimensional, nonequilibrium, wet-steam calculations for nozzle and turbine cascades. Journal of Turbomachinery, 114, 569–579.CrossRefGoogle Scholar
  65. Zagarola, M., & Smits, A. (1998). Mean-flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 373, 33–79.CrossRefMATHGoogle Scholar
  66. Zhu, Y., & Jiang, P. (2014). Experimental and numerical investigation of the effect of shock wave characteristics on the ejector performance. International Journal of Refrigeration, 40, 31–42.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Grazzini
    • 1
  • Adriano Milazzo
    • 1
  • Federico Mazzelli
    • 1
  1. 1.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations