Ejector Design

  • Giuseppe Grazzini
  • Adriano Milazzo
  • Federico Mazzelli
Chapter

Abstract

Ejector design may be performed at various levels of complexity. In many cases, ejectors are designed in a rather empirical way, and the only elements of the ejector geometry that receive a calculation effort are the main flow sections. Other elements, like the mixing zone length or the angle of the secondary flow inlet, are left to the experience of the designer. The effect of other details, like the presence of fillets between conical and cylindrical parts, is also neglected.

Indeed, a detailed analysis of the influence of geometrical details on the supersonic flow is not feasible with analytical tools. The only way to get a complete picture of the flow field is to analyze the ejector by a Computational Fluid Dynamics (CFD) approach. However, it must be stressed that CFD is not a design tool. The complete geometry of the ejector must be known in advance before any CFD analysis is attempted. Eventually, the design may be modified in order to mitigate any problem that could be revealed by the CFD results, but there is no way to state that all possible design options have been explored.

Probably, a hybrid approach combining a first scrutiny of possible configurations and a subsequent CFD analysis could be an answer. In the following sections, a few simple design tools will be presented, while the potential offered by up-to-date CFD techniques will be resumed in the following chapter.

Keywords

Design Optimization Nozzle Diffuser Efficiency 

References

  1. Arbel, A., et al. (2003). Ejector irreversibility characteristics. Transactions of the ASME. Journal of Fluids Engineering, 125, 121–129.CrossRefGoogle Scholar
  2. Bejan, A. (1996). Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. Journal of Applied Physics, 79(3), 1191–1218.CrossRefGoogle Scholar
  3. Bejan, A., Vargas, J., & Sokolov, M. (1995). Optimal allocation of a heat-exchanger inventory in heat driven refrigerators. International Journal of Heat and Mass Transfer, 38, 2997–3004.CrossRefGoogle Scholar
  4. Besagni, G., Mereu, R., & Inzoli, F. (2016). Ejector refrigeration: a comprehensive review. Renewable and Sustainable Energy Reviews, 53, 373–407.CrossRefGoogle Scholar
  5. Brown, B., & Argrow, B. (1999). Calculation of supersonic minimum length nozzle for equilibrium flow. Inverse Problem in Engineering, 7, 66–95.CrossRefGoogle Scholar
  6. Chang, Y.-J., & Chen, Y.-M. (2000). Enhancement of a steam-jet refrigerator using a novel application of the petal nozzle. Experimental Thermal and Fluid Science, 22, 203–211.CrossRefGoogle Scholar
  7. Chunnanond, K., & Aphornratana, S. (2004). An experimental investigation of a steam ejector. Applied Thermal Engineering, 24, 311–322.CrossRefGoogle Scholar
  8. Dvorak, V. (2007). Shape optimization and computational analysis of axisymmetric ejector. Proceedings of the 8th International Symposium on Experimental and Computational Aerothermodynamics of Internal Flows. Lyon.Google Scholar
  9. Eames, I. (2002). A new prescription for the design of supersonic jet-pumps: the constant rate of momentum change method. Applied Thermal Engineering, 22, 121–131.CrossRefGoogle Scholar
  10. Eames, I., Milazzo, A., Paganini, D., & Livi, M. (2013). The design, manufacture and testing of a jet-pump chiller for air conditioning and industrial application. Applied Thermal Engineering, 58, 234–240.CrossRefGoogle Scholar
  11. ESDU. (1986). Ejectors and jet pumps, data item 86030. London, UK: ESDU International Ltd.Google Scholar
  12. Eves, J., et al. (2012). Design optimization of supersonic jet pumps using high fidelity flow analysis. Structural and Multidisciplinary Optimization, 45, 739–745.CrossRefMATHGoogle Scholar
  13. Fan, J., et al. (2011). Computational fluid dynamic analysis and design optimization of jet pumps. Computers & Fluids, 46, 212–217.CrossRefMATHGoogle Scholar
  14. Gordon, J., & Ng, K. (2000). Cool thermodynamics. Cambridge, UK: Cambridge International Science Publishing.Google Scholar
  15. Grazzini, G. & D’Albero, M. (1998, June 2–5). A Jet-Pump inverse cycle with water pumping column. Proceedings of natural working fluids ’98. Oslo.Google Scholar
  16. Grazzini, G., & Mariani, A. (1998). A simple program to design a multi-stage jet-pump for refrigeration cycles. Energy Conversion and Management, 39, 1827–1834.CrossRefGoogle Scholar
  17. Grazzini, G., & Rocchetti, A. (2002). Numerical optimization of a two-stage ejector refrigeration plant. International Journal of Refrigeration, 25, 621–633.CrossRefGoogle Scholar
  18. Grazzini, G., & Rocchetti, A. (2008). Influence of the objective function on the optimisation of a steam ejector cycle. International Journal of Refrigeration, 31, 510–515.CrossRefGoogle Scholar
  19. Grazzini, G., Rocchetti, A. & Eames, I. (2004). A new ejector design method discloses potential improvements to the performance of jet-pump cycle refrigerators. Heat Powered Cycle Conference, Larnaca.Google Scholar
  20. Grazzini, G., Milazzo, A., & Paganini, D. (2012). Design of an ejector cycle refrigeration system. Energy Conversion and Management, 54, 38–46.CrossRefGoogle Scholar
  21. Grazzini, G., Mazzelli, F. & Milazzo, A. (2015, May 18–19). Constructal design of the mixing zone inside a supersonic ejector. Constructal Law & Second Law Conference, Parma.Google Scholar
  22. Hoffman, J., Scofield, M., & Thompson, H. (1972). Thrust nozzle optimization including boundary layer effects. Journal of Optimization Theory and Applications, 10, 133–159.MathSciNetCrossRefMATHGoogle Scholar
  23. Huang, B., Chang, J., Wang, C., & Petrenko, V. (1999). A 1-D analysis of ejector performance. International Journal of Refrigeration, 22, 354–364.CrossRefGoogle Scholar
  24. Huang, B., Hu, S., & Lee, S. (2006). Development of an ejector cooling system with thermal pumping effect. International Journal of Refrigeration, 29, 476–484.CrossRefGoogle Scholar
  25. Husain, A., Sonawat, A., Mohan, S., & Samad, A. (2016). Energy efficient design of a jet pump by ensemble of surrogates and evolutionary approach. International Journal of Fluid Machinery and Systems, 9, 265–276.CrossRefGoogle Scholar
  26. Kasperski, J. (2009). Two kinds of gravitational ejector refrigerator stimulation. Applied Thermal Engineering, 29, 3380–3385.CrossRefGoogle Scholar
  27. Keenan, J., Neumann, E., & Lustwerk, F. (1950). An investigation of ejector design by analysis and experiment. Journal of Applied Mechanics, 17, 299–309.Google Scholar
  28. Kim, S., Jin, J., & Kwon, S. (2006). Experimental investigation of an annular injection supersonic ejector. AIAA Journal, 44(8), 1905–1908.CrossRefGoogle Scholar
  29. Kock, F., & Herwig, H. (2004). Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions. International Journal of Heat and Mass Transfer, 47, 2205–2215.CrossRefMATHGoogle Scholar
  30. Kong, F., & Kim, H. (2016). Optimization study of a two-stage ejector–diffuser system. International Journal of Heat and Mass Transfer, 101, 1151–1162.CrossRefGoogle Scholar
  31. Kracík, J. & Dvorák, V. (2015). Experimental and numerical investigation of an air to air supersonic ejector for propulsion of a small supersonic wind tunnel. EPJ Web of Conferences. EFM14 – Experimental Fluid Mechanics, s.l.Google Scholar
  32. Lee, M., et al. (2016). Optimization of two-phase R600a ejector geometries using a non-equilibrium CFD model. Applied Thermal Engineering, 109, 272–282.CrossRefGoogle Scholar
  33. Little, A., & Garimella, S. (2016). A critical review linking ejector flow phenomena with component- and system-level performance. International Journal of Refrigeration, 70, 243–268.CrossRefGoogle Scholar
  34. Locatelli, M., & Schoen, F. (2013). Global optimization; theory, algorithms, and applications. s.l.: MOS-SIAM.CrossRefMATHGoogle Scholar
  35. Mazzelli, F. (2015). Single & two-phase supersonic ejectors for refrigeration applications (Ph.D. thesis). Florence.Google Scholar
  36. McGovern, R., Narayan, G., & Lienhard, J. (2012). Analysis of reversible ejectors and definition of an ejector efficiency. International Journal of Thermal Sciences, 54, 153–166.CrossRefGoogle Scholar
  37. Milazzo, M., & Rocchetti, A. (2015). Modelling of ejector chillers with steam and other working fluids. International Journal of Refrigeration, 57, 277–287.CrossRefGoogle Scholar
  38. Milli, A. (2006). Development and application of numerical methods for the aerodynamic design and optimisation of turbine components (Ph.D. thesis). Università degli Studi di Firenze, s.l.Google Scholar
  39. Munday, J. T., & Bagster, D. F. (1977). A new ejector theory applied to steam jet refrigeration. Industrial & Engineering Chemistry Process Design and Development, 164, 442–449.CrossRefGoogle Scholar
  40. Nguyen, V., Riffat, S., & Doherty, P. (2001). Development of a solar-powered passive ejector cooling system. Applied Thermal Engineering, 21, 157–168.CrossRefGoogle Scholar
  41. Nocedal, J., & Wright, S. (2006). Numerical optimization. s.l.: Springer.MATHGoogle Scholar
  42. Opgenorth, M., Sederstroma, D., McDermott, W., & Lengsfeld, C. (2012). Maximizing pressure recovery using lobed nozzles in a supersonic ejector. Applied Thermal Engineering, 37, 396–402.CrossRefGoogle Scholar
  43. Palacz, P., et al. (2016). CFD-based shape optimisation of a CO2 two-phase ejector mixing section. Applied Thermal Engineering, 95, 62–69.CrossRefGoogle Scholar
  44. Palacz, P., et al. (2017). Shape optimisation of a two-phase ejector for CO2 refrigeration systems. International Journal of Refrigeration, 74, 212–223.CrossRefGoogle Scholar
  45. Polanco, G., Holdøb, A.E., & Mundayc, G. (2010). General review of flashing jet studies. Journal of Hazard Material, 173, 2–18.Google Scholar
  46. Pope, A., & Goin, K. (1978). High-speed wind tunnel testing. s.l.: Wiley.Google Scholar
  47. Rao, S., & Jagadeesh, G. (2014). Novel supersonic nozzles for mixing enhancement in supersonic ejectors. Applied Thermal Engineering, 71, 62–71.CrossRefGoogle Scholar
  48. Riffat, S. B. (1996). International, Patent No. PCT-GB96-00855.Google Scholar
  49. Riffat, S., & Holt, A. (1998). A novel heat pipe/ejector cooler. Applied Thermal Engineering, 18, 93–101.CrossRefGoogle Scholar
  50. Shahpar, S. (2004). Automatic aerodynamic design optimisation of turbomachinery components – an industrial perspective, von Karman lecture series 2004–7. s.l.: American Institute of Aeronautics and Astronautics.Google Scholar
  51. Shen, S., et al. (2005). Study of a gas-liquid ejector and its application to a solar-powered bi-ejector refrigeration system. Applied Thermal Engineering, 25, 2891–2902.CrossRefGoogle Scholar
  52. Shope, F. (2006, June 5–8). Contour design techniques for super/hypersonic wind tunnel nozzles. 24th applied aerodynamics conference. AIAA, San Francisco.Google Scholar
  53. Shyy, W., Papila, N., Vaidyanathan, R., & Tucker, K. (2001). Global design optimization for aerodynamics and rocket propulsion components. Progress in Aerospace Sciences, 37, 59–118.CrossRefGoogle Scholar
  54. Sierra-Pallares, J., García del Valle, J., García Carrascal, P., & Castro Ruiz, F. (2016). A computational study about the types of entropy generation in three different R134a ejector mixing chambers. International Journal of Refrigeration, 63, 199–213.CrossRefGoogle Scholar
  55. Smits, A., & Dussauge, J.-P. (2006). Turbulent shear layers in supersonic flow (2nd ed.). New York: Springer.Google Scholar
  56. Srikrishnan, A., Kurian, J., & Sriramulu, V. (1996). Experimental study on mixing enhancement by petal nozzle in supersonic flow. Journal of Propulsion and Power, 12(1), 165–169.CrossRefGoogle Scholar
  57. Srisastra, P., & Aphornratana, S. (2005). A circulating system for a steam jet refrigeration system. Applied Thermal Engineering, 25, 2247–2257.CrossRefGoogle Scholar
  58. Srisastra, P., Aphornratana, S., & Sriveerakul, T. (2008). Development of a circulating system for a jet refrigeration cycle. International Journal of Refrigeration, 31, 921–929.CrossRefGoogle Scholar
  59. Wang, J., Wu, J., Hu, S., & Huang, B. (2009). Performance of ejector cooling system with thermal pumping effect using R141b and R365mfc. Applied Thermal Engineering, 29, 1904–1912.CrossRefGoogle Scholar
  60. Worall, M. (2001). An investigation of a jet-pump thermal (ice) storage system powered by low-grade heat (Ph.D. thesis). University of Nottingham, s.l.Google Scholar
  61. Yadav, R., & Patwardhan, A. (2008). Design aspects of ejectors: effects of suction chamber geometry. Chemical Engineering Science, 63, 3886–3897.CrossRefGoogle Scholar
  62. Yapici, R., et al. (2008). Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. International Journal of Refrigeration, 31, 1183–1189.CrossRefGoogle Scholar
  63. Zhu, Y., Cai, W., Wen, C., & Li, Y. (2009). Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 29, 898–905.CrossRefGoogle Scholar
  64. Ziapour, B., & Abbasy, A. (2010). First and second laws analysis of the heat pipe/ejector refrigeration cycle. Energy, 35, 3307–3314.CrossRefGoogle Scholar
  65. Zucrow, M. (1976). Gas dynamics. s.l.: Wiley.MATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Giuseppe Grazzini
    • 1
  • Adriano Milazzo
    • 1
  • Federico Mazzelli
    • 1
  1. 1.Department of Industrial EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations