Advertisement

Prokaryotic Information Games: How and When to Take up and Secrete DNA

  • Kerstin Stingl
  • Günther Koraimann
Chapter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 413)

Abstract

Besides transduction via bacteriophages natural transformation and bacterial conjugation are the most important mechanisms driving bacterial evolution and horizontal gene spread. Conjugation systems have evolved in eubacteria and archaea. In Gram-positive and Gram-negative bacteria, cell-to-cell DNA transport is typically facilitated by a type IV secretion system (T4SS). T4SSs also mediate uptake of free DNA in Helicobacter pylori, while most transformable bacteria use a type II secretion/type IV pilus system. In this chapter, we focus on how and when bacteria “decide” that such a DNA transport apparatus is to be expressed and assembled in a cell that becomes competent. Development of DNA uptake competence and DNA transfer competence is driven by a variety of stimuli and often involves intricate regulatory networks leading to dramatic changes in gene expression patterns and bacterial physiology. In both cases, genetically homogeneous populations generate a distinct subpopulation that is competent for DNA uptake or DNA transfer or might uniformly switch into competent state. Phenotypic conversion from one state to the other can rely on bistable genetic networks that are activated stochastically with the integration of external signaling molecules. In addition, we discuss principles of DNA uptake processes in naturally transformable bacteria and intend to understand the exceptional use of a T4SS for DNA import in the gastric pathogen H. pylori. Realizing the events that trigger developmental transformation into competence within a bacterial population will eventually help to create novel and effective therapies against the transmission of antibiotic resistances among pathogens.

Keywords

Horizontal gene transfer (HGT) Gene regulatory networks Transformation Bacterial conjugation Integrative conjugative elements (ICE) Conjugative plasmids (CP) DNA uptake 

References

  1. Aas FE, Lovold C, Koomey M (2002) An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression. Mol Microbiol 46(5):1441–1450.  https://doi.org/10.1046/j.1365-2958.2002.03265.xCrossRefPubMedGoogle Scholar
  2. Aras RA, Small AJ, Ando T, Blaser MJ (2002) Helicobacter pylori interstrain restriction-modification diversity prevents genome subversion by chromosomal DNA from competing strains. Nucleic Acids Res 30(24):5391–5397CrossRefGoogle Scholar
  3. Assalkhou R, Balasingham S, Collins RF, Frye SA, Davidsen T, Benam AV, Bjoras M, Derrick JP, Tonjum T (2007) The outer membrane secretin PilQ from Neisseria meningitidis binds DNA. Microbiology 153(Pt 5):1593–1603.  https://doi.org/10.1099/mic.0.2006/004200-0CrossRefPubMedPubMedCentralGoogle Scholar
  4. Attaiech L, Boughammoura A, Brochier-Armanet C, Allatif O, Peillard-Fiorente F, Edwards RA, Omar AR, MacMillan AM, Glover M, Charpentier X (2016) Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A 113(31):8813–8818.  https://doi.org/10.1073/pnas.1601626113CrossRefPubMedPubMedCentralGoogle Scholar
  5. Auchtung JM, Aleksanyan N, Bulku A, Berkmen MB (2016) Biology of ICEBs1, an integrative and conjugative element in Bacillus subtilis. Plasmid 86:14–25.  https://doi.org/10.1016/j.plasmid.2016.07.001CrossRefPubMedGoogle Scholar
  6. Bacon DJ, Alm RA, Burr DH, Hu L, Kopecko DJ, Ewing CP, Trust TJ, Guerry P (2000) Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infect Immun 68(8):4384–4390.  https://doi.org/10.1128/IAI.68.8.4384-4390.2000CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bacon DJ, Alm RA, Hu L, Hickey TE, Ewing CP, Batchelor RA, Trust TJ, Guerry P (2002) DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun 70(11):6242–6250.  https://doi.org/10.1128/IAI.70.11.6242-6250.2002CrossRefPubMedPubMedCentralGoogle Scholar
  8. Baker JA, Simkovic F, Taylor HM, Rigden DJ (2016) Potential DNA binding and nuclease functions of ComEC domains characterized in silico. Proteins 84(10):1431–1442.  https://doi.org/10.1002/prot.25088CrossRefPubMedPubMedCentralGoogle Scholar
  9. Baltrus DA, Guillemin K (2006) Multiple phases of competence occur during the Helicobacter pylori growth cycle. FEMS Microbiol Lett 255(1):148–155.  https://doi.org/10.1111/j.1574-6968.2005.00066.xCrossRefPubMedGoogle Scholar
  10. Bandyopadhyay A, O’Brien S, Frank KL, Dunny GM, Hu W-S (2016) Antagonistic donor density effect conserved in multiple enterococcal conjugative plasmids. Appl Environ Microbiol 82:4537–4545.  https://doi.org/10.1128/AEM.00363-16CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bañuelos-Vazquez LA, Tejerizo GT, Brom S (2017) Regulation of conjugative transfer of plasmids and integrative conjugative elements. Plasmid 91:82–89.  https://doi.org/10.1016/j.plasmid.2017.04.002CrossRefPubMedGoogle Scholar
  12. Barany F, Tomasz A (1980) Genetic transformation of Streptococcus pneumoniae by heterologous plasmid deoxyribonucleic acid. J Bacteriol 144(2):698–709PubMedPubMedCentralGoogle Scholar
  13. Bayer M, Eferl R, Zellnig G, Teferle K, Dijkstra AJ, Koraimann G, Högenauer G (1995) Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J Bacteriol 177:4279–4288.  https://doi.org/10.1128/jb.177.15.4279-4288.1995CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bayramoglu B, Toubiana D, van Vliet S, Inglis RF, Shnerb N, Gillor O (2017) Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective. Sci Rep 7:42068.  https://doi.org/10.1038/srep42068CrossRefPubMedPubMedCentralGoogle Scholar
  15. Beauchamp JM, Erfurt RS, DiRita VJ (2015) Characterization and localization of the Campylobacter jejuni transformation system proteins CtsE, CtsP, and CtsX. J Bacteriol 197(3):636–645.  https://doi.org/10.1128/JB.02434-14CrossRefPubMedPubMedCentralGoogle Scholar
  16. Beauchamp JM, Leveque RM, Dawid S, DiRita VJ (2017) Methylation-dependent DNA discrimination in natural transformation of Campylobacter jejuni. Proc Natl Acad Sci 114(38):E8053–E8061.  https://doi.org/10.1073/pnas.1703331114CrossRefGoogle Scholar
  17. Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA (2012) CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12(2):177–186.  https://doi.org/10.1016/j.chom.2012.06.003CrossRefPubMedGoogle Scholar
  18. Blokesch M (2012) Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ Microbiol 14(8):1898–1912.  https://doi.org/10.1111/j.1462-2920.2011.02689.xCrossRefPubMedGoogle Scholar
  19. Briley K Jr, Dorsey-Oresto A, Prepiak P, Dias MJ, Mann JM, Dubnau D (2011) The secretion ATPase ComGA is required for the binding and transport of transforming DNA. Mol Microbiol 81(3):818–830.  https://doi.org/10.1111/j.1365-2958.2011.07730.xCrossRefPubMedPubMedCentralGoogle Scholar
  20. Bubendorfer S, Krebes J, Yang I, Hage E, Schulz TF, Bahlawane C, Didelot X, Suerbaum S (2016) Genome-wide analysis of chromosomal import patterns after natural transformation of Helicobacter pylori. Nat Commun 7:11995.  https://doi.org/10.1038/ncomms11995CrossRefPubMedPubMedCentralGoogle Scholar
  21. Buchrieser C, Charpentier X (2013) Induction of competence for natural transformation in Legionella pneumophila and exploitation for mutant construction. Methods Mol Biol 954:183–195.  https://doi.org/10.1007/978-1-62703-161-5_9CrossRefPubMedGoogle Scholar
  22. Bury-Mone S, Skouloubris S, Labigne A, De Reuse H (2001) The Helicobacter pylori UreI protein: role in adaptation to acidity and identification of residues essential for its activity and for acid activation. Mol Microbiol 42(4):1021–1034.  https://doi.org/10.1046/j.1365-2958.2001.02689.xCrossRefPubMedGoogle Scholar
  23. Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304(5674):1170–1173.  https://doi.org/10.1126/science.1095211CrossRefPubMedGoogle Scholar
  24. Cehovin A, Simpson PJ, McDowell MA, Brown DR, Noschese R, Pallett M, Brady J, Baldwin GS, Lea SM, Matthews SJ, Pelicic V (2013) Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A 110(8):3065–3070.  https://doi.org/10.1073/pnas.1218832110CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G (2009) Structure of the outer membrane complex of a type IV secretion system. Nature 462(7276):1011–1015.  https://doi.org/10.1038/nature08588CrossRefPubMedPubMedCentralGoogle Scholar
  26. Charpentier X, Faucher SP, Kalachikov S, Shuman HA (2008) Loss of RNase R induces competence development in Legionella pneumophila. J Bacteriol 190(24):8126–8136.  https://doi.org/10.1128/JB.01035-08CrossRefPubMedPubMedCentralGoogle Scholar
  27. Charpentier X, Kay E, Schneider D, Shuman HA (2011) Antibiotics and UV radiation induce competence for natural transformation in Legionella pneumophila. J Bacteriol 193(5):1114–1121.  https://doi.org/10.1128/JB.01146-10CrossRefPubMedGoogle Scholar
  28. Chen I, Dubnau D (2004) DNA uptake during bacterial transformation. Nat Rev Microbiol 2(3):241–249.  https://doi.org/10.1038/nrmicro844CrossRefPubMedGoogle Scholar
  29. Chen I, Gotschlich EC (2001) ComE, a competence protein from Neisseria gonorrhoeae with DNA-binding activity. J Bacteriol 183(10):3160–3168.  https://doi.org/10.1128/JB.183.10.3160-3168.2001CrossRefPubMedPubMedCentralGoogle Scholar
  30. Chen I, Provvedi R, Dubnau D (2006) A macromolecular complex formed by a pilin-like protein in competent Bacillus subtilis. J Biol Chem 281(31):21720–21727.  https://doi.org/10.1074/jbc.M604071200CrossRefPubMedGoogle Scholar
  31. Clarke M, Maddera L, Harris RL, Silverman PM (2008) F-pili dynamics by live-cell imaging. Proc Natl Acad Sci U S A 105(46):17978–17981.  https://doi.org/10.1073/pnas.0806786105CrossRefPubMedPubMedCentralGoogle Scholar
  32. Claverys JP, Martin B, Polard P (2009) The genetic transformation machinery: composition, localization, and mechanism. FEMS Microbiol Rev 33(3):643–656.  https://doi.org/10.1111/j.1574-6976.2009.00164.xCrossRefPubMedGoogle Scholar
  33. Clewell DB (2011) Tales of conjugation and sex pheromones: a plasmid and enterococcal odyssey. Mob Genet Elem 1:38–54.  https://doi.org/10.4161/mge.1.1.15409CrossRefGoogle Scholar
  34. Corbinais C, Mathieu A, Damke PP, Kortulewski T, Busso D, Prado-Acosta M, Radicella JP, Marsin S (2017) ComB proteins expression levels determine Helicobacter pylori competence capacity. Sci Rep 7:41495.  https://doi.org/10.1038/srep41495CrossRefPubMedPubMedCentralGoogle Scholar
  35. Corbinais C, Mathieu A, Kortulewski T, Radicella JP, Marsin S (2016) Following transforming DNA in Helicobacter pylori from uptake to expression. Mol Microbiol 101(6):1039–1053.  https://doi.org/10.1111/mmi.13440CrossRefPubMedGoogle Scholar
  36. Danner DB, Deich RA, Sisco KL, Smith HO (1980) An eleven-base-pair sequence determines the specificity of DNA uptake in Haemophilus transformation. Gene 11(3–4):311–318.  https://doi.org/10.1016/0378-1119(80)90071-2CrossRefPubMedGoogle Scholar
  37. de Jong IG, Haccou P, Kuipers OP (2011) Bet hedging or not? A guide to proper classification of microbial survival strategies. BioEssays 33:215–223.  https://doi.org/10.1002/bies.201000127CrossRefPubMedGoogle Scholar
  38. de la Cueva-Méndez G, Pimentel B (2007) Gene and cell survival: lessons from prokaryotic plasmid R1. EMBO Rep 8:458–464.  https://doi.org/10.1038/sj.embor.7400957CrossRefPubMedPubMedCentralGoogle Scholar
  39. Delavat F, Mitri S, Pelet S, van der Meer JR (2016) Highly variable individual donor cell fates characterize robust horizontal gene transfer of an integrative and conjugative element. Proc Natl Acad Sci 113:E3375–E3383.  https://doi.org/10.1073/pnas.1604479113CrossRefPubMedPubMedCentralGoogle Scholar
  40. Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR (2017) The hidden life of integrative and conjugative elements. FEMS Microbiol Rev.  https://doi.org/10.1093/femsre/fux008CrossRefPubMedPubMedCentralGoogle Scholar
  41. Dorer MS, Fero J, Salama NR (2010) DNA damage triggers genetic exchange in Helicobacter pylori. PLoS Pathog 6(7):e1001026.  https://doi.org/10.1371/journal.ppat.1001026CrossRefPubMedPubMedCentralGoogle Scholar
  42. Draskovic I, Dubnau D (2005) Biogenesis of a putative channel protein, ComEC, required for DNA uptake: membrane topology, oligomerization and formation of disulphide bonds. Mol Microbiol 55(3):881–896.  https://doi.org/10.1111/j.1365-2958.2004.04430.xCrossRefPubMedGoogle Scholar
  43. Dunny GM (2013) Enterococcal sex pheromones: signaling, social behavior, and evolution. Annu Rev Genet 47:457–482.  https://doi.org/10.1146/annurev-genet-111212-133449CrossRefPubMedGoogle Scholar
  44. Elkins C, Thomas CE, Seifert HS, Sparling PF (1991) Species-specific uptake of DNA by gonococci is mediated by a 10-base-pair sequence. J Bacteriol 173(12):3911–3913.  https://doi.org/10.1128/jb.173.12.3911-3913.1991CrossRefPubMedPubMedCentralGoogle Scholar
  45. Facius D, Fussenegger M, Meyer TF (1996) Sequential action of factors involved in natural competence for transformation of Neisseria gonorrhoeae. FEMS Microbiol Lett 137(2–3):159–164CrossRefGoogle Scholar
  46. Facius D, Meyer TF (1993) A novel determinant (comA) essential for natural transformation competence in Neisseria gonorrhoeae and the effect of a comA defect on pilin variation. Mol Microbiol 10(4):699–712.  https://doi.org/10.1111/j.1365-2958.1993.tb00942.xCrossRefPubMedGoogle Scholar
  47. Fernandez-Gonzalez E, Backert S (2014) DNA transfer in the gastric pathogen Helicobacter pylori. J Gastroenterol 49(4):594–604.  https://doi.org/10.1007/s00535-014-0938-yCrossRefPubMedGoogle Scholar
  48. Fernandez-Lopez R, de Toro M, Moncalian G, Garcillan-Barcia MP, de la Cruz F (2016) Comparative genomics of the conjugation region of F-like plasmids: five shades of F. Frontiers in Molecular Biosciences 3:71.  https://doi.org/10.3389/fmolb.2016.00071CrossRefPubMedPubMedCentralGoogle Scholar
  49. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–285.  https://doi.org/10.1093/nar/gkv1344CrossRefPubMedGoogle Scholar
  50. Fontaine L, Wahl A, Flechard M, Mignolet J, Hols P (2015) Regulation of competence for natural transformation in streptococci. Infect Genet Evol 33:343–360.  https://doi.org/10.1016/j.meegid.2014.09.010CrossRefPubMedGoogle Scholar
  51. Frost LSLS, Koraimann G (2010) Regulation of bacterial conjugation: balancing opportunity with adversity. Future Microbiology 5:1057–1071.  https://doi.org/10.2217/fmb.10.70CrossRefPubMedGoogle Scholar
  52. Gaasbeek EJ, Wagenaar JA, Guilhabert MR, van Putten JP, Parker CT, van der Wal FJ (2010) Nucleases encoded by the integrated elements CJIE2 and CJIE4 inhibit natural transformation of Campylobacter jejuni. J Bacteriol 192(4):936–941.  https://doi.org/10.1128/JB.00867-09CrossRefPubMedGoogle Scholar
  53. Gaasbeek EJ, Wagenaar JA, Guilhabert MR, Wosten MM, van Putten JP, van der Graaf-van Bloois L, Parker CT, van der Wal FJ (2009) A DNase encoded by integrated element CJIE1 inhibits natural transformation of Campylobacter jejuni. J Bacteriol 191(7):2296–2306.  https://doi.org/10.1128/JB.01430-08CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gangel H, Hepp C, Müller S, Oldewurtel ER, Aas FE, Koomey M, Maier B (2014) Concerted spatio-temporal dynamics of imported DNA and ComE DNA uptake protein during gonococcal transformation. PLoS Pathog 10(4):e1004043.  https://doi.org/10.1371/journal.ppat.1004043CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gray TA, Clark RR, Boucher N, Lapierre P, Smith C, Derbyshire KM (2016) Intercellular communication and conjugation are mediated by ESX secretion systems in mycobacteria. Science 354:347–350.  https://doi.org/10.1126/science.aag0828CrossRefPubMedGoogle Scholar
  56. Griffith F (1928) The significance of pneumococcal types. J Hyg (Lond) 27(2):113–159CrossRefGoogle Scholar
  57. Grohmann E, Christie PJ, Waksman G, Backert S (2018) Type IV secretion in gram-negative and gram-positive bacteria. Mol Microbiol 107:455–471  https://doi.org/10.1111/mmi.13896CrossRefPubMedGoogle Scholar
  58. Hahn J, Tanner AW, Carabetta VJ, Cristea IM, Dubnau D (2015) ComGA-RelA interaction and persistence in the Bacillus subtilis K-state. Mol Microbiol 97(3):454–471.  https://doi.org/10.1111/mmi.13040CrossRefPubMedPubMedCentralGoogle Scholar
  59. Haijema BJ, Hahn J, Haynes J, Dubnau D (2001) A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 40(1):52–64.  https://doi.org/10.1046/j.1365-2958.2001.02363.xCrossRefPubMedGoogle Scholar
  60. Hamilton HL, Dillard JP (2006) Natural transformation of Neisseria gonorrhoeae: from DNA donation to homologous recombination. Mol Microbiol 59(2):376–385.  https://doi.org/10.1111/j.1365-2958.2005.04964.xCrossRefPubMedGoogle Scholar
  61. Hepp C, Maier B (2016) Kinetics of DNA uptake during transformation provide evidence for a translocation ratchet mechanism. Proc Natl Acad Sci U S A 113(44):12467–12472.  https://doi.org/10.1073/pnas.1608110113CrossRefPubMedPubMedCentralGoogle Scholar
  62. Herriott RM, Meyer EM, Vogt M (1970) Defined nongrowth media for stage II development of competence in Haemophilus influenzae. J Bacteriol 101(2):517–524PubMedPubMedCentralGoogle Scholar
  63. Hofreuter D, Karnholz A, Haas R (2003) Topology and membrane interaction of Helicobacter pylori ComB proteins involved in natural transformation competence. Int J Med Microbiol 293(2–3):153–165.  https://doi.org/10.1078/1438-4221-00258CrossRefPubMedGoogle Scholar
  64. Hofreuter D, Odenbreit S, Haas R (2001) Natural transformation competence in Helicobacter pylori is mediated by the basic components of a type IV secretion system. Mol Microbiol 41(2):379–391.  https://doi.org/10.1046/j.1365-2958.2001.02502.xCrossRefPubMedGoogle Scholar
  65. Inamine GS, Dubnau D (1995) ComEA, a Bacillus subtilis integral membrane protein required for genetic transformation, is needed for both DNA binding and transport. J Bacteriol 177(11):3045–3051CrossRefGoogle Scholar
  66. Israel DA, Lou AS, Blaser MJ (2000) Characteristics of Helicobacter pylori natural transformation. FEMS Microbiol Lett 186(2):275–280.  https://doi.org/10.1111/j.1574-6968.2000.tb09117.xCrossRefPubMedGoogle Scholar
  67. Jeon B, Muraoka W, Sahin O, Zhang Q (2008) Role of Cj1211 in natural transformation and transfer of antibiotic resistance determinants in Campylobacter jejuni. Antimicrob Agents Chemother 52(8):2699–2708.  https://doi.org/10.1128/AAC.01607-07CrossRefPubMedPubMedCentralGoogle Scholar
  68. Jeon B, Zhang Q (2007) Cj0011c, a periplasmic single- and double-stranded DNA-binding protein, contributes to natural transformation in Campylobacter jejuni. J Bacteriol 189(20):7399–7407.  https://doi.org/10.1128/JB.01012-07CrossRefPubMedPubMedCentralGoogle Scholar
  69. Johnson CM, Grossman AD (2015) Integrative and conjugative elements (ICEs): what they do and how they work. Annu Rev Genet 49:577–601.  https://doi.org/10.1146/annurev-genet-112414-055018CrossRefPubMedPubMedCentralGoogle Scholar
  70. Johnston C, Martin B, Fichant G, Polard P, Claverys JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12(3):181–196.  https://doi.org/10.1038/nrmicro3199CrossRefPubMedGoogle Scholar
  71. Johnston C, Martin B, Polard P, Claverys JP (2013) Postreplication targeting of transformants by bacterial immune systems? Trends Microbiol 21(10):516–521.  https://doi.org/10.1016/j.tim.2013.08.002CrossRefPubMedGoogle Scholar
  72. Kamenšek S, Podlesek Z, Gillor O, Žgur-Bertok D (2010) Genes regulated by the Escherichia coli SOS repressor LexA exhibit heterogenous expression. BMC Microbiol 10:283.  https://doi.org/10.1186/1471-2180-10-283CrossRefPubMedPubMedCentralGoogle Scholar
  73. Karnholz A, Hoefler C, Odenbreit S, Fischer W, Hofreuter D, Haas R (2006) Functional and topological characterization of novel components of the comB DNA transformation competence system in Helicobacter pylori. J Bacteriol 188(3):882–893.  https://doi.org/10.1128/JB.188.3.882-893.2006CrossRefPubMedPubMedCentralGoogle Scholar
  74. Kerr JE, Christie PJ (2010) Evidence for VirB4-mediated dislocation of membrane-integrated VirB2 pilin during biogenesis of the Agrobacterium VirB/VirD4 type IV secretion system. J Bacteriol 192(19):4923–4934.  https://doi.org/10.1128/JB.00557-10CrossRefPubMedPubMedCentralGoogle Scholar
  75. Kidane D, Ayora S, Sweasy JB, Graumann PL, Alonso JC (2012) The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery. Crit Rev Biochem Mol Biol 47(6):531–555.  https://doi.org/10.3109/10409238.2012.729562CrossRefPubMedPubMedCentralGoogle Scholar
  76. Kline KA, Seifert HS (2005) Mutation of the priA gene of Neisseria gonorrhoeae affects DNA transformation and DNA repair. J Bacteriol 187(15):5347–5355.  https://doi.org/10.1128/JB.187.15.5347-5355.2005CrossRefPubMedPubMedCentralGoogle Scholar
  77. Koonin EV (2016) Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions. F1000Res.  https://doi.org/10.12688/f1000research.8737.1
  78. Koraimann G, Koraimann C, Koronakis V, Schlager S, Högenauer G (1991) Repression and derepression of conjugation of plasmid R1 by wild-type and mutated finP antisense RNA. Mol Microbiol 5:77–87.  https://doi.org/10.1111/j.1365-2958.1991.tb01828.xCrossRefPubMedGoogle Scholar
  79. Koraimann G, Wagner MA (2014) Social behavior and decision making in bacterial conjugation. Front Cell Infect Microbiol 4:54.  https://doi.org/10.3389/fcimb.2014.00054CrossRefPubMedPubMedCentralGoogle Scholar
  80. Krüger NJ, Knüver MT, Zawilak-Pawlik A, Appel B, Stingl K (2016) Genetic diversity as consequence of a microaerobic and neutrophilic lifestyle. PLoS Pathog 12(5):e1005626.  https://doi.org/10.1371/journal.ppat.1005626CrossRefPubMedPubMedCentralGoogle Scholar
  81. Krüger NJ, Stingl K (2011) Two steps away from novelty–principles of bacterial DNA uptake. Mol Microbiol 80(4):860–867.  https://doi.org/10.1111/j.1365-2958.2011.07647.xCrossRefPubMedGoogle Scholar
  82. Lang J, Faure D (2014) Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Front Plant Sci 5:14.  https://doi.org/10.3389/fpls.2014.00014CrossRefPubMedPubMedCentralGoogle Scholar
  83. Lang S, Kirchberger PC, Gruber CJ, Redzej A, Raffl S, Zellnig G, Zangger K, Zechner EL (2011) An activation domain of plasmid R1 TraI protein delineates stages of gene transfer initiation. Mol Microbiol 82:1071–1085.  https://doi.org/10.1111/j.1365-2958.2011.07872.xCrossRefPubMedPubMedCentralGoogle Scholar
  84. Lanza VF, de Toro M, Garcillán-Barcia MP, Mora A, Blanco J, Coque TM, de la Cruz F (2014) Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences. PLoS Genet 10:e1004766.  https://doi.org/10.1371/journal.pgen.1004766CrossRefPubMedPubMedCentralGoogle Scholar
  85. Larsen JC, Szymanski C, Guerry P (2004) N-linked protein glycosylation is required for full competence in Campylobacter jejuni 81-176. J Bacteriol 186(19):6508–6514.  https://doi.org/10.1128/JB.186.19.6508-6514.2004CrossRefPubMedPubMedCentralGoogle Scholar
  86. Lee MS, Morrison DA (1999) Identification of a new regulator in Streptococcus pneumoniae linking quorum sensing to competence for genetic transformation. J Bacteriol 181(16):5004–5016PubMedPubMedCentralGoogle Scholar
  87. Leisner M, Stingl K, Radler JO, Maier B (2007) Basal expression rate of comK sets a ‘switching-window’ into the K-state of Bacillus subtilis. Mol Microbiol 63(6):1806–1816.  https://doi.org/10.1111/j.1365-2958.2007.05628.xCrossRefPubMedGoogle Scholar
  88. Lo Scrudato M, Blokesch M (2012) The regulatory network of natural competence and transformation of Vibrio cholerae. PLoS Genet 8(6):e1002778.  https://doi.org/10.1371/journal.pgen.1002778CrossRefPubMedPubMedCentralGoogle Scholar
  89. Lo Scrudato M, Blokesch M (2013) A transcriptional regulator linking quorum sensing and chitin induction to render Vibrio cholerae naturally transformable. Nucleic Acids Res 41(6):3644–3658.  https://doi.org/10.1093/nar/gkt041CrossRefPubMedPubMedCentralGoogle Scholar
  90. Londono-Vallejo JA, Dubnau D (1994) Mutation of the putative nucleotide binding site of the Bacillus subtilis membrane protein ComFA abolishes the uptake of DNA during transformation. J Bacteriol 176(15):4642–4645.  https://doi.org/10.1128/jb.176.15.4642-4645.1994CrossRefPubMedPubMedCentralGoogle Scholar
  91. Maamar H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56(3):615–624.  https://doi.org/10.1111/j.1365-2958.2005.04592.xCrossRefPubMedGoogle Scholar
  92. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526–529.  https://doi.org/10.1126/science.1140818CrossRefPubMedGoogle Scholar
  93. MacFadyen LP, Chen D, Vo HC, Liao D, Sinotte R, Redfield RJ (2001) Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 40(3):700–707.  https://doi.org/10.1046/j.1365-2958.2001.02419.xCrossRefPubMedGoogle Scholar
  94. Macfadyen LP, Dorocicz IR, Reizer J, Saier MH Jr, Redfield RJ (1996) Regulation of competence development and sugar utilization in Haemophilus influenzae Rd by a phosphoenolpyruvate: fructose phosphotransferase system. Mol Microbiol 21(5):941–952.  https://doi.org/10.1046/j.1365-2958.1996.441420.xCrossRefPubMedGoogle Scholar
  95. Maier B, Chen I, Dubnau D, Sheetz MP (2004) DNA transport into Bacillus subtilis requires proton motive force to generate large molecular forces. Nat Struct Mol Biol 11(7):643–649.  https://doi.org/10.1038/nsmb783CrossRefPubMedGoogle Scholar
  96. Maisonneuve E, Gerdes K (2014) Molecular mechanisms underlying bacterial persisters. Cell.  https://doi.org/10.1016/j.cell.2014.02.050CrossRefPubMedGoogle Scholar
  97. Marsich E, Zuccato P, Rizzi S, Vetere A, Tonin E, Paoletti S (2002) Helicobacter pylori expresses an autolytic enzyme: gene identification, cloning, and theoretical protein structure. J Bacteriol 184(22):6270–6279.  https://doi.org/10.1128/JB.184.22.6270-6279.2002CrossRefPubMedPubMedCentralGoogle Scholar
  98. McCool JD, Long E, Petrosino JF, Sandler HA, Rosenberg SM, Sandler SJ (2004) Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol Microbiol 53:1343–1357.  https://doi.org/10.1111/j.1365-2958.2004.04225.xCrossRefPubMedGoogle Scholar
  99. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310(5755):1824–1827.  https://doi.org/10.1126/science.1120096CrossRefPubMedGoogle Scholar
  100. Mell JC, Hall IM, Redfield RJ (2012) Defining the DNA uptake specificity of naturally competent Haemophilus influenzae cells. Nucleic Acids Res 40(17):8536–8549.  https://doi.org/10.1093/nar/gks640CrossRefPubMedPubMedCentralGoogle Scholar
  101. Mirouze N, Berge MA, Soulet AL, Mortier-Barriere I, Quentin Y, Fichant G, Granadel C, Noirot-Gros MF, Noirot P, Polard P, Martin B, Claverys JP (2013) Direct involvement of DprA, the transformation-dedicated RecA loader, in the shut-off of pneumococcal competence. Proc Natl Acad Sci U S A 110(11):E1035–1044.  https://doi.org/10.1073/pnas.1219868110CrossRefPubMedGoogle Scholar
  102. Miyazaki R, Minoia M, Pradervand N, Sulser S, Reinhard F, van der Meer JR (2012) Cellular variability of RpoS expression underlies subpopulation activation of an integrative and conjugative element. PLoS Genet 8:e1002818.  https://doi.org/10.1371/journal.pgen.1002818CrossRefPubMedPubMedCentralGoogle Scholar
  103. Moore ME, Lam A, Bhatnagar S, Solnick JV (2014) Environmental determinants of transformation efficiency in Helicobacter pylori. J Bacteriol 196(2):337–344.  https://doi.org/10.1128/JB.00633-13CrossRefPubMedPubMedCentralGoogle Scholar
  104. Mortier-Barriere I, Velten M, Dupaigne P, Mirouze N, Pietrement O, McGovern S, Fichant G, Martin B, Noirot P, Le Cam E, Polard P, Claverys JP (2007) A key presynaptic role in transformation for a widespread bacterial protein: DprA conveys incoming ssDNA to RecA. Cell 130(5):824–836.  https://doi.org/10.1016/j.cell.2007.07.038CrossRefPubMedGoogle Scholar
  105. Nuk MR, Reisner A, Zechner EL (2011) The transfer operon of plasmid R1 extends beyond finO into the downstream replication genes. Plasmid 65:150–158.  https://doi.org/10.1016/j.plasmid.2010.12.003CrossRefPubMedGoogle Scholar
  106. O’Rourke EJ, Pinto AV, Petroni EA, Tolmasky ME, Ielpi L (2004) Evidence for the active role of a novel nuclease from Helicobacter pylori in the horizontal transfer of genetic information. J Bacteriol 186(9):2586–2593.  https://doi.org/10.1128/JB.186.9.2586-2593.2004CrossRefPubMedPubMedCentralGoogle Scholar
  107. Obergfell KP, Seifert HS (2016) The pilin N-terminal domain maintains Neisseria gonorrhoeae transformation competence during pilus phase variation. PLoS Genet 12(5):e1006069.  https://doi.org/10.1371/journal.pgen.1006069CrossRefPubMedPubMedCentralGoogle Scholar
  108. Ohshima H, Tatemichi M, Sawa T (2003) Chemical basis of inflammation-induced carcinogenesis. Arch Biochem Biophys 417(1):3–11.  https://doi.org/10.1016/S0003-9861(03)00283-2CrossRefPubMedGoogle Scholar
  109. Pestova EV, Havarstein LS, Morrison DA (1996) Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol Microbiol 21(4):853–862.  https://doi.org/10.1046/j.1365-2958.1996.501417.xCrossRefPubMedGoogle Scholar
  110. Pestova EV, Morrison DA (1998) Isolation and characterization of three Streptococcus pneumoniae transformation-specific loci by use of a lacZ reporter insertion vector. J Bacteriol 180(10):2701–2710PubMedPubMedCentralGoogle Scholar
  111. Pölzleitner E, Zechner ELL, Renner W, Fratte R, Jauk B, Högenauer G, Koraimann G (1997) TraM of plasmid R1 controls transfer gene expression as an integrated control element in a complex regulatory network. Mol Microbiol 25:495–507.  https://doi.org/10.1046/j.1365-2958.1997.4831853.xCrossRefPubMedGoogle Scholar
  112. Poulin-Laprade D, Carraro N, Burrus V (2015) The extended regulatory networks of SXT/R391 integrative and conjugative elements and IncA/C conjugative plasmids. Front Microbiol 6:1–15.  https://doi.org/10.3389/fmicb.2015.00837CrossRefGoogle Scholar
  113. Provvedi R, Chen I, Dubnau D (2001) NucA is required for DNA cleavage during transformation of Bacillus subtilis. Mol Microbiol 40(3):634–644.  https://doi.org/10.1046/j.1365-2958.2001.02406.xCrossRefPubMedGoogle Scholar
  114. Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313(5783):89–92.  https://doi.org/10.1126/science.1127912CrossRefPubMedGoogle Scholar
  115. Puyet A, Greenberg B, Lacks SA (1990) Genetic and structural characterization of endA. a membrane-bound nuclease required for transformation of Streptococcus pneumoniae. J Mol Biol 213(4):727–738.  https://doi.org/10.1016/S0022-2836(05)80259-1CrossRefPubMedGoogle Scholar
  116. Quigley EM, Turnberg LA (1987) pH of the microclimate lining human gastric and duodenal mucosa in vivo: studies in control subjects and in duodenal ulcer patients. Gastroenterology 92(6):1876–1884.  https://doi.org/10.1016/0016-5085(87)90619-6CrossRefPubMedGoogle Scholar
  117. Reinhard F, Miyazaki R, Pradervand N, van der Meer JR (2013) Cell differentiation to “mating bodies” induced by an integrating and conjugative element in free-living bacteria. Curr Biol 23:255–259.  https://doi.org/10.1016/j.cub.2012.12.025CrossRefPubMedGoogle Scholar
  118. Reisner A, Wolinski H, Zechner EL (2012) In situ monitoring of IncF plasmid transfer on semi-solid agar surfaces reveals a limited invasion of plasmids in recipient colonies. Plasmid 67:155–161.  https://doi.org/10.1016/j.plasmid.2012.01.001CrossRefPubMedPubMedCentralGoogle Scholar
  119. Roberts AP, Mullany P (2009) A modular master on the move: the Tn916 family of mobile genetic elements. Trends Microbiol 17:251–258.  https://doi.org/10.1016/j.tim.2009.03.002CrossRefPubMedGoogle Scholar
  120. Saunders NJ, Peden JF, Moxon ER (1999) Absence in Helicobacter pylori of an uptake sequence for enhancing uptake of homospecific DNA during transformation. Microbiology 145(Pt 12):3523–3528.  https://doi.org/10.1099/00221287-145-12-3523CrossRefPubMedGoogle Scholar
  121. Schwab M, Reisenzein H, Högenauer G (1993) TraM of plasmid R1 regulates its own expression. Mol Microbiol 7(5):795–803.  https://doi.org/10.1111/j.1365-2958.1993.tb01170.xCrossRefPubMedGoogle Scholar
  122. Seitz P, Blokesch M (2013) DNA-uptake machinery of naturally competent Vibrio cholerae. Proc Natl Acad Sci U S A 110(44):17987–17992.  https://doi.org/10.1073/pnas.1315647110CrossRefPubMedPubMedCentralGoogle Scholar
  123. Seitz P, Blokesch M (2014) DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. MBio.  https://doi.org/10.1128/mBio.01409-14CrossRefPubMedPubMedCentralGoogle Scholar
  124. Sinha S, Mell J, Redfield R (2013) The availability of purine nucleotides regulates natural competence by controlling translation of the competence activator Sxy. Mol Microbiol 88(6):1106–1119.  https://doi.org/10.1111/mmi.12245CrossRefPubMedPubMedCentralGoogle Scholar
  125. Sinha S, Mell JC, Redfield RJ (2012) Seventeen Sxy-dependent cyclic AMP receptor protein site-regulated genes are needed for natural transformation in Haemophilus influenzae. J Bacteriol 194(19):5245–5254.  https://doi.org/10.1128/JB.00671-12CrossRefPubMedPubMedCentralGoogle Scholar
  126. Slager J, Kjos M, Attaiech L, Veening JW (2014) Antibiotic-induced replication stress triggers bacterial competence by increasing gene dosage near the origin. Cell 157(2):395–406.  https://doi.org/10.1016/j.cell.2014.01.068CrossRefPubMedGoogle Scholar
  127. Smeets LC, Bijlsma JJ, Boomkens SY, Vandenbroucke-Grauls CM, Kusters JG (2000) comH, a novel gene essential for natural transformation of Helicobacter pylori. J Bacteriol 182(14):3948–3954.  https://doi.org/10.1128/JB.182.14.3948-3954.2000CrossRefPubMedPubMedCentralGoogle Scholar
  128. Smits WK, Eschevins CC, Susanna KA, Bron S, Kuipers OP, Hamoen LW (2005) Stripping Bacillus: comK auto-stimulation is responsible for the bistable response in competence development. Mol Microbiol 56(3):604–614.  https://doi.org/10.1111/j.1365-2958.2005.04488.xCrossRefPubMedGoogle Scholar
  129. Soltyk A, Shugar D, Piechowska M (1975) Heterologous deoxyribonucleic acid uptake and complexing with cellular constituents in competent Bacillus subtilis. J Bacteriol 124(3):1429–1438PubMedPubMedCentralGoogle Scholar
  130. Stein DC (1991) Transformation of Neisseria gonorrhoeae: physical requirements of the transforming DNA. Can J Microbiol 37(5):345–349.  https://doi.org/10.1139/m91-056CrossRefPubMedGoogle Scholar
  131. Stingl K, Müller S, Scheidgen-Kleyboldt G, Clausen M, Maier B (2010) Composite system mediates two-step DNA uptake into Helicobacter pylori. Proc Natl Acad Sci U S A 107(3):1184–1189.  https://doi.org/10.1073/pnas.0909955107CrossRefPubMedGoogle Scholar
  132. Stone BJ, Kwaik YA (1999) Natural competence for DNA transformation by Legionella pneumophila and its association with expression of type IV pili. J Bacteriol 181(5):1395–1402PubMedPubMedCentralGoogle Scholar
  133. Suckow G, Seitz P, Blokesch M (2011) Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J Bacteriol 193(18):4914–4924.  https://doi.org/10.1128/JB.05396-11CrossRefPubMedPubMedCentralGoogle Scholar
  134. Süel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440:545–550.  https://doi.org/10.1038/nature04588CrossRefPubMedGoogle Scholar
  135. Taki K, Abo T, Ohtsubo E (1998) Regulatory mechanisms in expression of the traY-I operon of sex factor plasmid R100: involvement of traJ and traY gene products. Genes Cells 3:331–345.  https://doi.org/10.1046/j.1365-2443.1998.00194.xCrossRefPubMedGoogle Scholar
  136. Thoma L, Muth G (2016) Conjugative DNA-transfer in Streptomyces, a mycelial organism. Plasmid 87–88:1–9.  https://doi.org/10.1016/j.plasmid.2016.09.004CrossRefPubMedGoogle Scholar
  137. van Sinderen D, Luttinger A, Kong L, Dubnau D, Venema G, Hamoen L (1995) comK encodes the competence transcription factor, the key regulatory protein for competence development in Bacillus subtilis. Mol Microbiol 15(3):455–462.  https://doi.org/10.1111/j.1365-2958.1995.tb02259.xCrossRefPubMedGoogle Scholar
  138. Veening J-W, Smits WK, Kuipers OP (2008) Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 62:193–210.  https://doi.org/10.1146/annurev.micro.62.081307.163002CrossRefPubMedGoogle Scholar
  139. Vegge CS, Brondsted L, Ligowska-Marzeta M, Ingmer H (2012) Natural transformation of Campylobacter jejuni occurs beyond limits of growth. PLoS ONE 7(9):e45467.  https://doi.org/10.1371/journal.pone.0045467CrossRefPubMedPubMedCentralGoogle Scholar
  140. Wagner A, Whitaker RJ, Krause DJ, Heilers J-H, van Wolferen M, van der Does C, Albers S-V (2017) Mechanisms of gene flow in archaea. Nat Rev Microbiol 15:492–501.  https://doi.org/10.1038/nrmicro.2017.41CrossRefPubMedGoogle Scholar
  141. Wagner MA, Bischof K, Kati D, Koraimann G (2013) Silencing and activating type IV secretion genes of the F-like conjugative resistance plasmid R1. Microbiology 159:2481–2491.  https://doi.org/10.1099/mic.0.071738-0CrossRefPubMedGoogle Scholar
  142. Wang Y, Taylor DE (1990) Natural transformation in Campylobacter species. J Bacteriol 172(2):949–955.  https://doi.org/10.1128/jb.172.2.949-955.1990CrossRefPubMedPubMedCentralGoogle Scholar
  143. Waters JL, Salyers AA (2013) Regulation of CTnDOT conjugative transfer is a complex and highly coordinated series of events. mBio 4:e00569–00513.  https://doi.org/10.1128/mbio.00569-13CrossRefPubMedPubMedCentralGoogle Scholar
  144. Weeks DL, Eskandari S, Scott DR, Sachs G (2000) A H+-gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science 287(5452):482–485.  https://doi.org/10.1126/science.287.5452.482CrossRefPubMedGoogle Scholar
  145. White CE, Winans SC (2007) Cell-cell communication in the plant pathogen Agrobacterium tumefaciens. Philos Trans R Soc Lond B Biol Sci 362(1483):1135–1148.  https://doi.org/10.1098/rstb.2007.2040CrossRefPubMedPubMedCentralGoogle Scholar
  146. Wiesner RS, Hendrixson DR, DiRita VJ (2003) Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J Bacteriol 185(18):5408–5418.  https://doi.org/10.1128/JB.185.18.5408-5418.2003CrossRefPubMedPubMedCentralGoogle Scholar
  147. Wolfgang M, Lauer P, Park HS, Brossay L, Hebert J, Koomey M (1998) PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Mol Microbiol 29(1):321–330.  https://doi.org/10.1046/j.1365-2958.1998.00935.xCrossRefPubMedGoogle Scholar
  148. Wong JJ, Lu J, Glover JNM (2012) Relaxosome function and conjugation regulation in F-like plasmids—a structural biology perspective. Mol Microbiol 85:602–617.  https://doi.org/10.1111/j.1365-2958.2012.08131.xCrossRefPubMedGoogle Scholar
  149. Yang QE, Walsh TR (2017) Toxin-antitoxin systems and their role in disseminating and maintaining antimicrobial resistance. FEMS Microbiol Rev 41:343–353.  https://doi.org/10.1093/femsre/fux006CrossRefPubMedPubMedCentralGoogle Scholar
  150. Yeh YC, Lin TL, Chang KC, Wang JT (2003) Characterization of a ComE3 homologue essential for DNA transformation in Helicobacter pylori. Infect Immun 71(9):5427–5431.  https://doi.org/10.1128/IAI.71.9.5427-5431.2003CrossRefPubMedPubMedCentralGoogle Scholar
  151. Zahrl D, Wagner A, Tscherner M, Koraimann G (2007) GroEL plays a central role in stress-induced negative regulation of bacterial conjugation by promoting proteolytic degradation of the activator protein TraJ. J Bacteriol 189:5885–5894.  https://doi.org/10.1128/JB.00005-07CrossRefPubMedPubMedCentralGoogle Scholar
  152. Zhang C, Cleveland K, Schnoll-Sussman F, McClure B, Bigg M, Thakkar P, Schultz N, Shah MA, Betel D (2015) Identification of low abundance microbiome in clinical samples using whole genome sequencing. Genome Biol 16:265.  https://doi.org/10.1186/s13059-015-0821-zCrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National Reference Laboratory for Campylobacter, Department Biological SafetyFederal Institute for Risk Assessment (BfR)BerlinGermany
  2. 2.Institute of Molecular Biosciences, University of GrazGrazAustria

Personalised recommendations