Skip to main content

Towards Uncertainty-Assisted Brain Tumor Segmentation and Survival Prediction

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2017)

Abstract

Uncertainty measures of medical image analysis technologies, such as deep learning, are expected to facilitate their clinical acceptance and synergies with human expertise. Therefore, we propose a full-resolution residual convolutional neural network (FRRN) for brain tumor segmentation and examine the principle of Monte Carlo (MC) Dropout for uncertainty quantification by focusing on the Dropout position and rate. We further feed the resulting brain tumor segmentation into a survival prediction model, which is built on age and a subset of 26 image-derived geometrical features such as volume, volume ratios, surface, surface irregularity and statistics of the enhancing tumor rim width. The results show comparable segmentation performance between MC Dropout models and a standard weight scaling Dropout model. A qualitative evaluation further suggests that informative uncertainty can be obtained by applying MC Dropout after each convolution layer. For survival prediction, results suggest only using few features besides age. In the BraTS17 challenge, our method achieved the 2nd place in the survival task and completed the segmentation task in the 3rd best-performing cluster of statistically different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alberts, E., Rempfler, M., Alber, G., Huber, T., Kirschke, J., Zimmer, C., Menze, B.H.: Uncertainty quantification in brain tumor segmentation using CRFs and random perturbation models. In: Proceedings - International Symposium on Biomedical Imaging, vol. 2016 June, pp. 428–431. IEEE, April 2016

    Google Scholar 

  2. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  3. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive, January 2017. https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-LGG+collection

  4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive, January 2017. https://wiki.cancerimagingarchive.net/display/DOI/Segmentation+Labels+and+Radiomic+Features+for+the+Pre-operative+Scans+of+the+TCGA-GBM+collection;jsessionid=C2BE9FB8F9D5532DCA9E5CD294787DBC

  5. Cui, Y., Tha, K.K., Terasaka, S., Yamaguchi, S., Wang, J., Kudo, K., Xing, L., Shirato, H., Li, R.: Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 278(2), 546–553 (2016)

    Article  Google Scholar 

  6. Czarnek, N., Clark, K., Peters, K.B., Mazurowski, M.A.: Algorithmic three-dimensional analysis of tumor shape in MRI improves prognosis of survival in glioblastoma: a multi-institutional study. J. Neurooncol. 132(1), 55–62 (2017)

    Article  Google Scholar 

  7. Gal, Y.: Uncertainty in Deep Learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  8. Gal, Y., Ghahramani, Z.: Bayesian convolutional neural networks with Bernoulli approximate variational inference, June 2015. http://arxiv.org/abs/1506.02158

  9. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2016)

    Article  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  11. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. In: Proceedings of the British Machine Vision Conference (BMVC) (2017)

    Google Scholar 

  12. Kickingereder, P., Neuberger, U., Bonekamp, D., Piechotta, P.L., Götz, M., Wick, A., Sill, M., Kratz, A., Shinohara, R.T., Jones, D.T.W., Radbruch, A., Muschelli, J., Unterberg, A., Debus, J., Schlemmer, H.P., Herold-Mende, C., Pfister, S., von Deimling, A., Wick, W., Capper, D., Maier-Hein, K.H., Bendszus, M.: Radiomic subtyping improves disease stratification beyond key molecular, clinical and standard imaging characteristics in patients with glioblastoma. Neuro-Oncology, nox188 (2017)

    Google Scholar 

  13. Lê, M., Unkelbach, J., Ayache, N., Delingette, H.: GPSSI: gaussian process for sampling segmentations of images. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 38–46. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_5

    Chapter  Google Scholar 

  14. Meier, R., Knecht, U., Jungo, A., Wiest, R., Reyes, M.: Perturb-and-MPM: quantifying segmentation uncertainty in dense multi-label CRFs, March 2017. http://arxiv.org/abs/1703.00312

  15. Menze, B., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.A., Arbel, T., Avants, B., Ayache, N., Buendia, P., Collins, L., Cordier, N., Corso, J., Criminisi, A., Das, T., Delingette, H., Demiralp, C., Durst, C., Dojat, M., Doyle, S., Festa, J., Forbes, F., Geremia, E., Glocker, B., Golland, P., Guo, X., Hamamci, A., Iftekharuddin, K., Jena, R., John, N., Konukoglu, E., Lashkari, D., Antonio Mariz, J., Meier, R., Pereira, S., Precup, D., Price, S.J., Riklin-Raviv, T., Reza, S., Ryan, M., Schwartz, L., Shin, H.C., Shotton, J., Silva, C., Sousa, N., Subbanna, N., Szekely, G., Taylor, T., Thomas, O., Tustison, N., Unal, G., Vasseur, F., Wintermark, M., Hye Ye, D., Zhao, L., Zhao, B., Zikic, D., Prastawa, M., Reyes, M., Van Leemput, K.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34, 33 (2014)

    Google Scholar 

  16. Pérez-Beteta, J., Martínez-González, A., Molina, D., Amo-Salas, M., Luque, B., Arregui, E., Calvo, M., Borrás, J.M., López, C., Claramonte, M., Barcia, J.A., Iglesias, L., Avecillas, J., Albillo, D., Navarro, M., Villanueva, J.M., Paniagua, J.C., Martino, J., Velásquez, C., Asenjo, B., Benavides, M., Herruzo, I., Delgado, M.D.C., del Valle, A., Falkov, A., Schucht, P., Arana, E., Pérez-Romasanta, L., Pérez-García, V.M.: Glioblastoma: does the pre-treatment geometry matter? a postcontrast T1 MRI-based study. Eur. Radiol. 27(3), 1096–1104 (2017)

    Article  Google Scholar 

  17. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Velazquez, R.E., Meier, R., Dunn, W.D., Alexander, B., Wiest, R., Bauer, S., Gutman, D.A., Reyes, M., Aerts, H.J.W.L.: Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Scientific reports 5, 16822, November 2015

    Google Scholar 

  19. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Yip, S.S.F., Aerts, H.J.W.L.: Applications and limitations of radiomics. Phy. Med. Biol. 61(13), R150–R166 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss National Foundation by grant number 169607, the Swiss Cancer League project MANAGE KFS-3979-08-2016, the Spanish Ministerio de Economía y Competitividad/FEDER by grant number MTM2015-71200-R, and the James S. Mc. Donnell Foundation 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer [Special Initiative Collaborative – Planning Grant 220020420 and Collaborative award 220020450].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Jungo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jungo, A. et al. (2018). Towards Uncertainty-Assisted Brain Tumor Segmentation and Survival Prediction. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2017. Lecture Notes in Computer Science(), vol 10670. Springer, Cham. https://doi.org/10.1007/978-3-319-75238-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75238-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75237-2

  • Online ISBN: 978-3-319-75238-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics