Advertisement

Brain Tumor Segmentation Using Dense Fully Convolutional Neural Network

  • Mazhar Shaikh
  • Ganesh Anand
  • Gagan Acharya
  • Abhijit Amrutkar
  • Varghese Alex
  • Ganapathy KrishnamurthiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10670)

Abstract

Manual segmentation of brain tumor is often time consuming and the performance of the segmentation varies based on the operators experience. This leads to the requisition of a fully automatic method for brain tumor segmentation. In this paper, we propose the usage of the 100 layer Tiramisu architecture for the segmentation of brain tumor from multi modal MR images, which is evolved by integrating a densely connected fully convolutional neural network (FCNN), followed by post-processing using a Dense Conditional Random Field (DCRF). The network consists of blocks of densely connected layers, transition down layers in down-sampling path and transition up layers in up-sampling path. The method was tested on dataset provided by Multi modal Brain Tumor Segmentation Challenge (BraTS) 2017. The training data is composed of 210 high-grade brain tumor and 74 low-grade brain tumor cases. The proposed network achieves a mean whole tumor, tumor core & active tumor dice score of 0.87, 0.68 & 0.65. Respectively on the BraTS ’17 validation set and 0.83, 0.65 & 0.65 on the Brats ’17 test set.

Keywords

Fully convolutional neural networks Multi modal mri segmentation Conditional random fields Tiramisu 

References

  1. 1.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Freymann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data (2017, in Press)Google Scholar
  2. 2.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  3. 3.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. Cancer Imaging Arch. (2017).  https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q
  4. 4.
    Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J., Freymann, J., Farahani, K., Davatzikos, C.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. (2017).  https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF
  5. 5.
    Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993, 25 August 2016
  6. 6.
    Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers Tiramisu: fully convolutional DenseNets for semantic segmentation. arXiv preprint arXiv:1611.09326, 28 November 2016
  7. 7.
    Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: a deep convolutional encoder-decoder architecture for image segmentation. CoRR, abs/1511.00561 (2015)Google Scholar
  8. 8.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)Google Scholar
  9. 9.
    Sadowská, M.: Analysis. Scalable Algorithms for Contact Problems. AMM, vol. 36, pp. 59–66. Springer, New York (2016).  https://doi.org/10.1007/978-1-4939-6834-3_4 CrossRefGoogle Scholar
  10. 10.
    Krhenbhl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. In: Advances in Neural Information Processing Systems (2011)Google Scholar
  11. 11.
    Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. arXiv preprint arXiv:1606.04797, 15 June 2016
  12. 12.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Deep convolutional neural networks for the segmentation of gliomas in multi-sequence MRI. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Handels, H. (eds.) BrainLes 2015. LNCS, vol. 9556, pp. 131–143. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-30858-6_12 CrossRefGoogle Scholar
  13. 13.
    Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980, 30 January 2017
  14. 14.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502.03167 (2015)Google Scholar
  15. 15.
    Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machinesGoogle Scholar
  16. 16.
    Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. arXiv:1608.04117
  17. 17.
    Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24574-4_28 CrossRefGoogle Scholar
  18. 18.
    Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. arXiv:1502.03240
  19. 19.
    Zhao, X., et al.: A deep learning model integrating FCNNs and CRFs for brain tumor segmentationGoogle Scholar
  20. 20.
    Brostow, G.J., Shotton, J., Fauqueur, J., Cipolla, R.: Segmentation and recognition using structure from motion point clouds. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 44–57. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88682-2_5 CrossRefGoogle Scholar
  21. 21.
    Raza, S.H., Grundmann, M., Essa, I.: Geometric context from video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2013)Google Scholar
  22. 22.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Man, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vigas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mazhar Shaikh
    • 1
  • Ganesh Anand
    • 1
  • Gagan Acharya
    • 1
  • Abhijit Amrutkar
    • 1
  • Varghese Alex
    • 1
  • Ganapathy Krishnamurthi
    • 1
    Email author
  1. 1.Medical Imaging and Reconstruction Lab, Department of Engineering DesignIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations