Advertisement

ECMRE: Extended Concurrent Multi Robot Environment

  • Juan Castro
  • Laura De Giusti
  • Gladys Gorga
  • Mariano Sánchez
  • Marcelo Naiouf
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 790)

Abstract

ECMRE is an extension of CMRE (Concurrent Multi Robot Environment) that adds features related to current parallel architectures: processor heterogeneity, energy consumption, processor speed change techniques in relation to temperature and/or energy consumption.

ECMRE allows incorporating the topics of concurrency and parallelism in a simple and entertaining manner in beginner classes in the courses of Computer Science by means of a graphic and interactive environment.

An initial test was carried out in a course with 42 students to analyze how they adapt to this new environment and how they can use it.

Keywords

Concurrency Parallelism Heterogeneous processors Parallel algorithms Energy consumption 

References

  1. 1.
    Hoare, C.: Communicating Sequential Processes. Prentice Hall, Upper Saddle River (1985)zbMATHGoogle Scholar
  2. 2.
    Dijkstra, Edsger W.: Finding the correctness proof of a concurrent program. In: Bauer, Friedrich L., et al. (eds.) Program Construction. LNCS, vol. 69, pp. 24–34. Springer, Heidelberg (1979).  https://doi.org/10.1007/BFb0014652 CrossRefGoogle Scholar
  3. 3.
    Hansen, P.B.: The Architecture of Concurrent Processes. Prentice Hall, Upper Saddle River (1977)zbMATHGoogle Scholar
  4. 4.
    Dasgupta, S.: Computer Architecture: A Modern Synthesis, Vol. 2: Advanced Topics, vol. 2. John Wiley & Sons, New York (1989)Google Scholar
  5. 5.
    ACM Curriculum Committee on Computer Science: Curriculum 1968: recommendations for the undergraduate program in computer science. Commun. ACM 11(3), 151–197 (1968)CrossRefGoogle Scholar
  6. 6.
    ACM Curriculum Committee on Computer Science: Curriculum 1978: recommendations for the undergraduate program in computer science. Commun. ACM 22(3), 147–166 (1979)CrossRefGoogle Scholar
  7. 7.
    ACM Two-Year College Education Committee: Guidelines for associate-degree and certificate programs to support computing in a networked environment. The Association for Computing Machinery, New York (1999)Google Scholar
  8. 8.
    Hoonlor, A., Szymanski, B.K., Zaki, M.J., Thompson, J.: An evolution of computer science research. Commun. ACM 56, 74–83 (2013)CrossRefGoogle Scholar
  9. 9.
    ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer Science Curricula 2013. Report from the Task Force (2013)Google Scholar
  10. 10.
    ACM/IEEE-CS Joint Task Force on Computing Curricula: Computer Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Computer Engineering. Report in the Computing Curricula Series (2004)Google Scholar
  11. 11.
    ACM/IEEE-CS Joint Interim Review Task Force: Computer Science Curriculum 2008: An Interim Revision of CS 2001. Report from the Interim Review Task Force (2008)Google Scholar
  12. 12.
    De Giusti, L., Leibovich, F., Sanchez, M., Chichizola, F., Naiouf, M., De Giusti, A.: Desafíos y herramientas para la enseñanza temprana de Concurrencia y Paralelismo. In: Congreso Argentino de Ciencias de la Computación (CACIC), pp. 1585–1595. Fundación de Altos Estudios en Ciencias Exactas, Mar del Plata (2013)Google Scholar
  13. 13.
    AMD: Evolución de la tecnología de múltiple núcleo. http://multicore.amd.com/es-ES/AMD-Multi-Core/resources/Technology-Evolution (2009)
  14. 14.
    De Giusti, L., Leibovich, F., Chichizola, F., Naiouf, M., De Giusti, A.: Incorporando conceptos en la enseñanza de Concurrencia y Paralelismo utilizando el entorno CMRE. In: Congreso Argentino de Ciencias de la Computación (CACIC), pp. 1212–1221. Red de Universidades con Carreras en Informática (RedUNCI), Junín (2015)Google Scholar
  15. 15.
    Gepner, P., Kowalik, M.F.: Multi-core processors: new way to achieve high system performance. In: Proceeding of International Symposium on Parallel Computing in Electrical Engineering 2006 (PAR ELEC 2006), pp. 9–13 (2006)Google Scholar
  16. 16.
    Cool, M.M.: Programming models for scalable multicore programming (2007). http://www.hpcwire.com/features/17902939.html
  17. 17.
    Balladini, J., Rucci, E., De Giusti, A., Naiouf, M., Suppi, R., Rexachs, D., Luque, E.: Power characterisation of shared-memory HPC systems. Computer Science & Technology Series–XVIII Argentine Congress of Computer Science Selected Papers, pp. 53–65 (2013)Google Scholar
  18. 18.
    Brown, D.J.: Toward energy-efficient computing. Mag. Commun. ACM 53(3), 50–58 (2010)CrossRefGoogle Scholar
  19. 19.
    De Giusti, A., De Giusti L., Leibovich, F., Sanchez, M., Rodriguez Eguren, S.: Entorno interactivo multirrobot para el aprendizaje de conceptos de Concurrencia y Paralelismo. In: IX Congreso de Tecnología en Educación y Educación en Tecnología, pp. 74–81. TE&ET, Chilecito Argentina (2014)Google Scholar
  20. 20.
    Champredonde R., De Giusti A. “Herramienta visual para la enseñanza de programación”. Congreso Argentino de Ciencias de la Computación (CACIC), pp. 520–531. Red de Universidades con Carreras en Informática (REDUNCI), San Luis (1996)Google Scholar
  21. 21.
    Champredonde, R., De Giusti A.: Design and implementation of the visual DaVinci language. In: Congreso Argentino de Ciencias de la Computación (CACIC), pp. 980–992. Red de Universidades con Carreras en Informática (REDUNCI), La Plata (1997)Google Scholar
  22. 22.
    Nodejs page: https://nodejs.org/api/http.html. Accessed 21 July 2017

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Juan Castro
    • 1
  • Laura De Giusti
    • 1
    • 2
  • Gladys Gorga
    • 1
  • Mariano Sánchez
    • 1
  • Marcelo Naiouf
    • 1
  1. 1.School of Computer Science, Computer Science Research Institute LIDI (III-LIDI)UNLPLa PlataArgentina
  2. 2.Scientific Research Agency of the Province of Buenos Aires (CICPBA)La PlataArgentina

Personalised recommendations