Advertisement

Excluding Ionospherically Unsafe Satellite Geometries in GBAS CAT-I

  • Oscar Bria
  • Javier Giacomantone
  • Luciano Lorenti
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 790)

Abstract

We show the results of the implementation of a preliminary algorithm for excluding ionospherically unsafe satellite geometries in Ground-Based Augmentation Systems Category I. Minimum knowledge of the ionospheric threat model is assumed and the assistance of the code-carrier divergence monitor is not considered. All the satellites in view above \(5^{\circ }\) in elevation are included in the computations. The inflation of the standard deviation of the vertical ionospheric gradient implements the exclusion. Full availability remains for a typical day in the site of La Plata Airport.

Keywords

GBAS Category I Ionospheric threat Parameter inflation 

References

  1. 1.
    International Civil Aviation Organization (ICAO): International Standards, Recommended Practices and Procedures for Air Navigation Services Annex 10 (1985)Google Scholar
  2. 2.
    U S Federal Aviation Administration (FAA): Specificaction Performance Type One Local Area Augmentation System Ground Facility. FAA-E-2937A (2002)Google Scholar
  3. 3.
    Rinnan, A., Gundersen, N., Sigmond, M., Nilsen, J.: Operational GNSS Integrity. In: Dynamic Positioning Conference (2011)Google Scholar
  4. 4.
    Dautermann, T., Sgammini, M., Pullen, S.: GBAS ionospheric threat analysis using DLRs hardware signal simulator. In: 2010 5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing (NAVITEC), pp. 1–7. IEEE (2010)Google Scholar
  5. 5.
    Gunawardena, S., Zhu, Z., De Haag, M., Graas, F.: Remote-controlled, continuously operating GPS anomalous event monitor. J. Inst. Navig. 56, 97–113 (2009)CrossRefGoogle Scholar
  6. 6.
    Park, Y., Pullen, S., Enge P.: Enabling LAAS airport surface movement: mitigating the anomalous ionospheric threat. In: IEEE/ION, Position, Location, and Navigation Symposium (2010)Google Scholar
  7. 7.
    Suzuki, S., Nozaki, Y., Ono, T., Yosihara, T., Saitoh, S., Fukushima, S.: CAT-I GBAS availability improvement through ionosphere field monitor (IFM). In: Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (2011)Google Scholar
  8. 8.
    Radio Technical Commission for Aeronautics (RTCA): Minimum Operational Performance Standards for GPS Local Area Augmentation Systm Airborne Equipment. Tecnical report DO253C (2008)Google Scholar
  9. 9.
    Radio Technical Commission for Aeronautics (RTCA): Minimum Aviation System Performance for the Local Area Augmentation System. Technical report DO245A (2004)Google Scholar
  10. 10.
    Elias, P., Saotome, O.: System architecture-based design methodology for monitoring the ground-based augmentatiom system, category I - integrity risk. J. Aerosp. Technol. Manag. 4, 205–218 (2012). São José dos CamposCrossRefGoogle Scholar
  11. 11.
    Lee, J., Pullen, S., Park, Y., Enge P., Brenner, M.: Position-domain geometry screening to maximize LAAS availability in the presence of ionosphere anomalies. In: Proceedings of the 19th International Technical Meeting of the Satellite Division of the Institute of Navigation ION GNSS (2006)Google Scholar
  12. 12.
    Luo, M., Pullen, S., Akos, D., Xie, G., Datta-Barua, S., Walter, T., Enge P.: Assessment of ionospheric impact on LAAS using WAAS supertruth data. In: Proceedings of the ION 58th Annual Meeting (2002)Google Scholar
  13. 13.
    International Civil Aviation Orgaanization South American Office (ICAO-SAM): Guide for Ground Based Augmentation System Implementation (2013)Google Scholar
  14. 14.
    Pullen, S. Park Y., Enge, P.: The IMpact and Mitigation of ionspheric anomalies on ground-based augmentation of GNSS. Radio Sci. 44 (2009)Google Scholar
  15. 15.
    Pullen, S., Enge, P.: An overview of GBAS integrity monitoring with a focus on ionspheric spatial anomalies. Indian J. Radio Space Phys. (2007)Google Scholar
  16. 16.
    Lee, J., Yoon, M., Pullen, S., Gillespie, J., Mather, N., Cole, R., Rodrigues de Souza, J., Doherty, P., Pradipta, R.: Preliminary results from ionospheric threat model development to support GBAS operations in the Brazilian region. In: Proceedings of the 28th International Technical Meeting of the Satellite Division of the Institute of Navigation (2015)Google Scholar
  17. 17.
    International Civil Aviation Orgaanization Asia and Pacific Office (ICAO-APAC): GBAS Safety Assesment Guidance Related to Anomalous Ionospheric Conditions (2016)Google Scholar
  18. 18.
    Kim, M., Lee, J., Pullen, S., Gillespie, J.: Data quality improvement and applications of long-term monitoring of ionospheric anomalies for GBAS. In: Proceedings of ION GNSS (2012)Google Scholar
  19. 19.
    U.S. Federal Aviation Administration (FAA): Ground Based Augmentation System Performance Analysis and Activities Report. First Quarter Report (2017)Google Scholar
  20. 20.
    Murphy, T., Harris, M., Park, Y., Pullen, S.: GBAS differentially corrected positioning service ionospheric anomaly errors evaluated in an operational context. In: Proceedings of the 2010 International Technical Meeting of the Institute of Navigation (2010)Google Scholar
  21. 21.
    Shively, C., Niles, R.: Safety concepts for mitigation of ionospheric anomaly errors in GBAS. In: Proceedings of the 2008 International Technical Meeting of the Institute of Navigation (2008)Google Scholar
  22. 22.
    Lee, J., Seo, J., Park, Y., Pullen, S., Enge, P.: Ionospheric threat mitigation by geometry screening in ground-based augmentation systems. J. Aircr. 48, 1422–1433 (2011)CrossRefGoogle Scholar
  23. 23.
    Vemuri, S., Sarma, A., Redd, A., Reddy, D.: Investigation of the effect of ionospheric gradient on GPS signals in the context of LAAS. Prog. Electromagn. Res. B 57, 191–205 (2014)CrossRefGoogle Scholar
  24. 24.
    Seo, J., Lee, J., Pullen, S., Enge, P., Close, S.: Trageted parameter inflation within ground-based augmentation systems to minimizw anomalous ionospheric impact. J. Aircr. 49, 587–599 (2012)CrossRefGoogle Scholar
  25. 25.
    Simili, D., Pervan, B.: Code-carrier divergence monitor for the GPS local area augmentation system. In: IEEE/ION, Position, Location, and Navigation Symposium (2006)Google Scholar
  26. 26.
    Radio Technical Commission for Aeronautics (RTCA): Minimum Operational Performance Standards for GPS Local Area Augmentation Systm Airborne Equipment. Tecnical report DO246D (2008)Google Scholar
  27. 27.
    Pullen, S.: Lessons learned from the development of GNSS integrity augmentations. In: Coordinates (2016). http://mycoordinates.org

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Oscar Bria
    • 1
  • Javier Giacomantone
    • 1
  • Luciano Lorenti
    • 1
  1. 1.School of Computer Science, Research Institute in Computer Science (III-LIDI)National University of La PlataLa PlataArgentina

Personalised recommendations