Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)
CrossRef
Google Scholar
Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_1
CrossRef
Google Scholar
Cheng, X., Yan, X., Lan, Y., Guo, J.: BTM: Topic modeling over short texts. IEEE Trans. Knowl. Data Eng. 26(12), 2928–2941 (2014)
CrossRef
Google Scholar
Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 230–237. ACM (1999)
Google Scholar
Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)
CrossRef
Google Scholar
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)
Google Scholar
Bell, R.M., Koren, Y.: Scalable collaborative filtering with jointly derived neighborhood interpolation weights. In: 2007 Seventh IEEE International Conference on Data Mining, ICDM 2007, pp. 43–52. IEEE (2007)
Google Scholar
Takács, G., Pilászy, I., Németh, B., Tikk, D.: Major components of the gravity recommendation system. ACM SIGKDD Expl. Newslett. 9(2), 80–83 (2007)
CrossRef
Google Scholar
California State University: Merlot - multimedia educational resource for learning and online teaching (2017). https://merlot.org. Accessed 30 June 2017
GroupLens Research: Movielens datasets (2017). https://grouplens.org/datasets/movielens/. Accessed 30 June 2017
Griffiths, T.L., Steyvers, M.: Finding scientific topics. Proc. Nat. Acad. Sci. 101(Suppl 1), 5228–5235 (2004)
CrossRef
Google Scholar
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741 (1984)
CrossRef
MATH
Google Scholar
Mimno, D., Wallach, H.M., Talley, E., Leenders, M., McCallum, A.: Optimizing semantic coherence in topic models. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 262–272. Association for Computational Linguistics (2011)
Google Scholar
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
MathSciNet
CrossRef
MATH
Google Scholar
Gupta, V., Lehal, G.S.: A survey of common stemming techniques and existing stemmers for Indian languages. J. Emerg. Technol. Web Intell. 5(2), 157–161 (2013)
Google Scholar
Lemire, D., Maclachlan, A.: Slope one predictors for online rating-based collaborative filtering. In: Proceedings of the 2005 SIAM International Conference on Data Mining, pp. 471–475. SIAM (2005)
Google Scholar
Mnih, A., Salakhutdinov, R.R.: Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems, pp. 1257–1264 (2008)
Google Scholar
Koren, Y., Sill, J.: Collaborative filtering on ordinal user feedback. In: IJCAI, pp. 3022–3026 (2013)
Google Scholar
Charnelli, M.E., Lanzarini, L., Diaz, J.: Modeling students through analysis of social networks topics. In: XXII Congreso Argentino de Ciencias de la Computacion CACIC 2016, pp. 363–371 (2016)
Google Scholar