A Shadow Removal Approach for a Background Subtraction Algorithm

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 790)


This paper presents preliminary results of an algorithm for shadow detection and removal in video sequences. The proposal is that from the base of the background subtraction with the Visual Background Extraction (ViBE), which identifies areas of movement, to apply a post processing to separate pixels from the real object and those of the shadow. As the areas of shadows have similar characteristics to those of the objects in movement, the separation becomes a difficult task. Consequently, the algorithms used for this classification may produce several false positives. To solve this problem, we set to use information of the object involved such as the size and movement direction, to estimate the most likely position of the shadow. Furthermore, the analysis of similarity between the present frame and the background model are realized, by means of the traditional indicator of normalized cross correlation to detect shadows. The algorithm may be used to detect both people and vehicles in applications for safety of cities, traffic monitoring, sports analysis, among others. The results obtained in the detection of objects show that it is highly likely to separate the shadow in a high percentage of effectiveness and low computational cost; allowing improving steps of further processing, such as object recognition and tracking.


Video processing Object detection Segmentation 


  1. 1.
    Dominguez, L., Perez, A., Rubiales, A., Damato, J., Barbuzza, R.: Herramientas para la detección y seguimiento de personas a partir de cámaras de seguridad. In: Proceedings del XXII Congreso Argentino de Ciencias de la Computación, pp. 251–260 (2016)Google Scholar
  2. 2.
    Kruegle, H.: CCTV Surveillance: Video Practices and Technology. Butterworth-Heinemann, Newton, MA, USA (2014)Google Scholar
  3. 3.
    Legua, C.: Seguimiento automático de objetos en sistemas con múltiples cámaras (2013)Google Scholar
  4. 4.
    Shaikh, S.H., Saeed, K., Chaki, N.: Moving Object Detection Using Background Subtraction, pp. 15–23. Springer, Cham (2014). Google Scholar
  5. 5.
    Azab, M., Shedeed, H., Hussein, A.: A new technique for background modeling and subtraction for motion detection in real-time videos. In: IEEE International Conference on Image Processing, pp. 3453–3456 (2010)Google Scholar
  6. 6.
    Hadi, R., Sulong, G., George, L.: Vehicle detection and tracking techniques: a concise review. Sig. Image Process. Int. J. 5, 1–12 (2014)CrossRefGoogle Scholar
  7. 7.
    Fredembach, C., Finlayson, G.: Simple shadow removal. In: Proceedings of the 18th International Conference on Pattern Recognition (ICPRA 2006), pp. 832–835 (2006)Google Scholar
  8. 8.
    Qin, R., Liao, S., Lei, Z., Li, S.Z.: Moving cast shadow removal based on local descriptors. In: 20th International Conference on Pattern Recognition, pp. 1377–1380 (2010)Google Scholar
  9. 9.
    Chen, F., Zhu, B., Jing, W., Yuan, L.: Removal shadow with background subtraction model vibe algorithm. In: 2013 2nd International Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA), pp. 264–269 (2013)Google Scholar
  10. 10.
    Barnich, O., Van Droogenbroeck, M.: Vibe: a universal background subtraction algorithm for video sequences. IEEE Trans. Image Process. 20(6), 1709–1724 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gervasoni, L., Damato, J., Barbuzza, R., Vénere, M.: Un método eficiente para la sustracción de fondo en videos usando gpu. Enief 2014, Revista Mecánica Computacional, pp. 1721–1731 (2014)Google Scholar
  12. 12.
    Barbuzza, R., Damato, J. and Rubiales, A., Dominguez, L., Perez, A., Venere, M.: Un método para la sustracción de fondo en videos inestables. Enief 2014, Revista Mecánica Computacional, pp. 3409–3417 (2016)Google Scholar
  13. 13.
    Jacques, J.C.S., Jung, C.R., Musse, S.R.: Background subtraction and shadow detection in grayscale video sequences. In: XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2005), pp. 189–196 (2005)Google Scholar
  14. 14.
    Goyette, N., Jodoin, P.M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection. net: a new change detection benchmark dataset. In: Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8 (2012)Google Scholar
  15. 15.
    Lahoz Beltra, R., Ortega, J., Fernandez Montraveta, C.: Métodos estadísticos en biología del comportamiento. Editorial Complutense (1994)Google Scholar
  16. 16.
    Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014)CrossRefGoogle Scholar
  17. 17.
    Zivkovic, Z.: Improved adaptive Gaussian mixture model for background subtraction. In: 2004 Proceedings of the 17th International Conference on Pattern Recognition (ICPR 2004), vol. 2, pp. 28–31 (2004)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.PLADEMAUniversidad Nacional del Centro de la Provincia de Buenos AiresBuenos AiresArgentina
  2. 2.National Council Scientific Technical ResearchCONICETBuenos AiresArgentina
  3. 3.Comisión de Investigaciones CientíficasCICPBABuenos AiresArgentina

Personalised recommendations