Advertisement

Autonomous Flight Control and Precise Gestural Positioning of a Small Quadrotor

  • Nikola G. Shakev
  • Sevil A. Ahmed
  • Andon V. Topalov
  • Vasil L. Popov
  • Kostadin B. Shiev
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 756)

Abstract

Precise gestural positioning interface of a small quadrotor, presented here, is an advance continuation (ending stage) of intelligent autonomous flight control strategy. It is based on gestures and visual computing techniques and ensures intuitive way of prepositioning (fine movements in flight’s end point proximity) in absence of GPS signal or when human interaction is crucial. Therefore, a human operator could control the implementation of various maneuvers during the flight of the rotorcraft via specific gestures and body postures. A Parrot AR. Drone quadrotor and a Microsoft Kinect sensor have been used to implement and evaluate the proposed autonomous and semi-autonomous flight control.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support provided within the Ministry of Education and Science of Bulgaria Research Fund Projects: FNI I 02/6/2014 and FNI M 07/03/2016.

References

  1. 1.
    Kawatsuma, S., Fukushima, M., Okada, T.: Emergency response by robots to Fukushima Daiichi accident: summary and lessons learned. Ind. Robot 39(5), 428–435 (2012)CrossRefGoogle Scholar
  2. 2.
    Cragg, L., Hu, H.: Application of mobile agents to robust tele-operation of internet robots in nuclear decommissioning. In: Proceedings of the IEEE International Conference on Industrial Technology, Maribor, Slovenia, 10–12 Dec 2003, pp. 1214–1219 (2003)Google Scholar
  3. 3.
    Microdrones GmbH (2016). www.microdrones.com
  4. 4.
    Ascending Technologies GmbH (2016). www.asctec.de
  5. 5.
    Martinez, J.L., Pequeno‐Boter, A., Mandow, A., Garcia‐Cerezo, A., Morales, J.: Progress in mini‐helicopter tracking with a 3D laser range finder. In: Proceedings of the 16th IFAC Triennial World Congress, Prague, Check Republic, vol. 38, no. 1, pp. 648–653 (2005)Google Scholar
  6. 6.
    Roberts, J., Stirling, T., Zufferey, J.-C., Floreano, D.: 3-D relative positioning sensor for indoor flying robots. Auton. Robots 33(1/2), 1–16 (2012)Google Scholar
  7. 7.
    Roberts, J., Stirling, T., Zufferey J.‐C.: Quadrotor using minimal sensing for autonomous indoor flight. In: Proceedings of the European Micro Air Vehicle Conference and Flight Competition (EMAV2007), Toulouse, France, 17–21 Sept 2007, pp. 1–8 (2007)Google Scholar
  8. 8.
    Winkvist, S., Rushforth, E., Young, K.: Towards an autonomous indoor aerial inspection vehicle. Ind. Robot: Int. J. 40(3), 196–207 (2013)CrossRefGoogle Scholar
  9. 9.
    Wongphati, M., Osawa, H., Imai, M.: User-defined gestures for controlling primitive motions of an end effector. J. Adv. Robot. 29(4), 225–238 (2015).  https://doi.org/10.1080/01691864.2014.978371
  10. 10.
    Kılıboz, N., Güdükbay, U., Hand A.: Gesture recognition technique for human-computer interaction. J. Vis. Commun. Image R (2015). http://dx.doi.org/10.1016/j.jvcir.2015.01.015
  11. 11.
    Bhuyan, M.K., MacDorman, K.F., Kar, M.K., Neog, D.R., Lovell, B.C., Gadde, P.: Hand pose recognition from monocular images by geometrical and texture analysis. J. Vis. Lang. Comput. (2015). http://dx.doi.org/10.1016/j.jvlc.2014.12.001
  12. 12.
    Xu, D., Wu, X., Chen, YL., Xu, Y.: Online dynamic gesture recognition for human robot interaction. J. Intell. Robot Syst. 77, 583 (2015).  https://doi.org/10.1007/s10846-014-0039-4
  13. 13.
    Cao, X.Q., Liu, Z.Q.: Type-2 fuzzy topic models for human action recognition. IEEE Trans. Fuzzy Syst. 23(5), 1581–1593 (2015).  https://doi.org/10.1109/tfuzz.2014.2370678
  14. 14.
    Aly, A., Tapus, A.: Towards an intelligent system for generating an adapted verbal and nonverbal combined behavior in human–robot interaction. Auton. Robot 40, 193 (2016).  https://doi.org/10.1007/s10514-015-9444-1
  15. 15.
    Pavlovic, V.I., Sharma, R.T., Huang, S.: Visual interpretation of hand gestures for human–computer interaction: a review. IEEE Trans. Pattern Anal. Mach. Intell. 19, 677–695 (1997)CrossRefGoogle Scholar
  16. 16.
    Interaction with a Quadrotor via the Kinect, ETH Zurich. http://www.youtube.com/watch?v=A52FqfOi0Ek
  17. 17.
    A.R. Drone web site. http://www.parrot.com/
  18. 18.
    Craig, J.J.: Introduction to Robotics: Mechanics and Control, 3rd edn. Pearson Education Inc., Prentice Hall (2005)Google Scholar
  19. 19.
    Shakev, N.G., Topalov, A.V., Kaynak, O.K., Shiev, K.B.: Comparative results on stabilization of the quad-rotor rotorcraft using bounded feedback controllers. J. Intell. Robot. Syst.: Theory Appl. 65(1–4), 389–408 (2012)CrossRefGoogle Scholar
  20. 20.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nikola G. Shakev
    • 1
  • Sevil A. Ahmed
    • 1
  • Andon V. Topalov
    • 1
  • Vasil L. Popov
    • 1
  • Kostadin B. Shiev
    • 1
  1. 1.Control Systems DepartmentTU – Sofia, Branch PlovdivPlovdivBulgaria

Personalised recommendations