Container-Based Support for Autonomic Data Stream Processing Through the Fog

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10659)


We present a container-based architecture for supporting autonomic data stream processing application on fog computing infrastructures. Our architecture runs applications as Docker containers, and it exploits the native features of Docker to dynamically scale up/down the resources of a fog node assigned to the applications running on it. Preliminary results demonstrate that Docker containers are appropriate for building migratable autonomic solutions on fog infrastructures.


Data stream processing Autonomic computing Fog IoT Docker 



This work has been partially supported by the EU H2020-ICT-2014-1 project RePhrase (No. 644235).


  1. 1.
    Process HAULer. Accessed 28 Apr 2017
  2. 2.
    Andrade, H., Gedik, B., Turaga, D.: Fundamentals of Stream Processing. Cambridge University Press, Cambridge (2014). Cambridge BooksCrossRefGoogle Scholar
  3. 3.
    Bertolli, C., Mencagli, G., Vanneschi, M.: Analyzing memory requirements for pervasive grid applications. In: 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, Pisa, pp. 297–301 (2010).
  4. 4.
    Brogi, A., Neri, D., Soldani, J.: DockerFinder: multi-attribute search of Docker images. In: Proceedings of the 2017 IEEE International Conference on Cloud Engineering, IC2E 2017, pp. 273–278 (2017)Google Scholar
  5. 5.
    Chen, N., Chen, Y., You, Y., Ling, H., Liang, P., Zimmermann, R.: Dynamic urban surveillance video stream processing using fog computing. In: 2016 IEEE International Conference on Multimedia Big Data (BigMM), pp. 105–112 (2016)Google Scholar
  6. 6.
    Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)CrossRefGoogle Scholar
  7. 7.
    CRIU: Criu integration with docker. Accessed 28 Apr 2017
  8. 8.
    Matteis, T., Mencagli, G.: Parallel patterns for window-based stateful operators on data streams: an algorithmic skeleton approach. Int. J. Parallel Program. 45(2), 382–401 (2017). CrossRefGoogle Scholar
  9. 9.
    Docker Inc.: Docker. Accessed 28 Apr 2017
  10. 10.
    Docker Inc.: Docker checkpoint command. Accessed 28 Apr 2017
  11. 11.
    Docker Inc.: Docker compose. Accessed 28 Apr 2017
  12. 12.
    Docker Inc.: Docker container networking. Accessed 28 Apr 2017
  13. 13.
    Docker Inc.: Docker hub. Accessed 28 Apr 2017
  14. 14.
    Hochreiner, C., Vögler, M., Schulte, S., Dustdar, S.: Elastic stream processing for the internet of things. In: 2016 IEEE 9th International Conference on Cloud Computing (CLOUD), pp. 100–107, June 2016Google Scholar
  15. 15.
    Hochreiner, C., Vögler, M., Waibel, P., Dustdar, S.: VISP: an ecosystem for elastic data stream processing for the internet of things. In: 2016 IEEE 20th International Enterprise Distributed Object Computing Conference (EDOC), pp. 1–11, September 2016Google Scholar
  16. 16.
    Mehdipour, F., Javadi, B., Mahanti, A.: FOG-engine: towards big data analytics in the fog. In: 2016 IEEE 14th International Conference on Dependable, Autonomic and Secure Computing, 14th International Conference on Pervasive Intelligence and Computing, 2nd International Conference on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), pp. 640–646, August 2016Google Scholar
  17. 17.
    Mencagli, G., Vanneschi, M.: QoS-control of structured parallel computations: a predictive control approach. In: 2011 IEEE 3rd International Conference on Cloud Computing Technology and Science, Athens, pp. 296–303 (2011).
  18. 18.
    Pahl, C., Lee, B.: Containers and clusters for edge cloud architectures - a technology review. In: 2015 3rd International Conference on Future Internet of Things and Cloud, pp. 379–386, August 2015Google Scholar
  19. 19.
    Pahl, C., Brogi, A., Soldani, J., Jamshidi, P.: Cloud container technologies: a state-of-the-art review. IEEE Trans. Cloud Comput. (2017, accepted for publication).
  20. 20.
    Pickartz, S., Eiling, N., Lankes, S., Razik, L., Monti, A.: Migrating LinuX containers using CRIU. In: Taufer, M., Mohr, B., Kunkel, J.M. (eds.) ISC High Performance 2016. LNCS, vol. 9945, pp. 674–684. Springer, Cham (2016). CrossRefGoogle Scholar
  21. 21.
    Sajjad, H.P., Danniswara, K., Al-Shishtawy, A., Vlassov, V.: SpanEdge: towards unifying stream processing over central and near-the-edge data centers. In: 2016 IEEE/ACM Symposium on Edge Computing (SEC), pp. 168–178, October 2016Google Scholar
  22. 22.
    Saurez, E., Hong, K., Lillethun, D., Ramachandran, U., Ottenwälder, B.: Incremental deployment and migration of geo-distributed situation awareness applications in the fog. In: Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems, pp. 258–269. ACM, June 2016Google Scholar
  23. 23.
    Shi, W., Dustdar, S.: The promise of edge computing. Computer 49(5), 78–81 (2016)CrossRefGoogle Scholar
  24. 24.
    Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A.C., Peterson, L.L.: Container-based operating system virtualization: a scalable, high-performance alternative to hypervisors. In: SIGOPS Operating Systems Review (2007)Google Scholar
  25. 25.
    U, L.H., Mamoulis, N., Mouratidis, K.: Efficient evaluation of multiple preference queries. In: 2009 IEEE 25th International Conference on Data Engineering, pp. 1251–1254, March 2009Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of PisaPisaItaly

Personalised recommendations