Skip to main content

Secret Key Amplification from Uniformly Leaked Key Exchange Complete Graph

  • Conference paper
  • First Online:
Book cover WALCOM: Algorithms and Computation (WALCOM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10755))

Included in the following conference series:

  • 526 Accesses

Abstract

We assume that every pair of n players has shared a one-bit key in advance, and that each key has been completely exposed to an eavesdropper, Eve, independently with a fixed probability p (and, thus, is perfectly secure with a probability of \(1-p\)). Using these pre-shared, possibly leaked keys, we want two designated players to share a common one-bit secret key in cooperation with other players so that Eve’s knowledge about the generated secret key will be as small as possible. The existing protocol, called the st-flow protocol, achieves this, but the specific probability that Eve knows the generated secret key is unknown. In this study, we answer this problem by showing the exact leak probability as a polynomial in p for any number n of players.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper, the expression “Eve does not know key k” means the key is completely unknown to Eve; that is, she cannot determine whether \(k=0\) or \(k=1\) with a probability of more than 1/2.

  2. 2.

    Note that the notation \(\mathcal {P}\) in this paper denotes a protocol, not a power set.

References

  1. Ahmadi, H., Safavi-Naini, R.: Private message transmission using disjoint paths. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 116–133. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_8

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995). https://doi.org/10.1109/18.476316

    Article  MathSciNet  MATH  Google Scholar 

  3. Colbourn, C.J., Colbourn, C.: The Combinatorics of Network Reliability, vol. 200. Oxford University Press, New York (1987)

    MATH  Google Scholar 

  4. Csiszár, I., Narayan, P.: Secrecy capacities for multiple terminals. IEEE Trans. Inf. Theory 50(12), 3047–3061 (2004). https://doi.org/10.1109/TIT.2004.838380

    Article  MathSciNet  MATH  Google Scholar 

  5. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. J. ACM 40(1), 17–47 (1993). https://doi.org/10.1145/138027.138036

    Article  MathSciNet  MATH  Google Scholar 

  6. Franklin, M.K., Wright, R.N.: Secure communication in minimal connectivity models. J. Cryptol. 13(1), 9–30 (2000). https://doi.org/10.1007/s001459910002

    Article  MathSciNet  MATH  Google Scholar 

  7. Franklin, M.K., Yung, M.: Secure hypergraphs: Privacy from partial broadcast. SIAM J. Discrete Math. 18(3), 437–450 (2004). https://doi.org/10.1137/S0895480198335215

    Article  MathSciNet  MATH  Google Scholar 

  8. Indo, Y., Mizuki, T., Nishizeki, T.: Absolutely secure message transmission using a key sharing graph. Discrete Math. Alg. Appl. 4(4) (2012). https://doi.org/10.1142/S179383091250053X

  9. Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Theory of Graphs: International Symposium, pp. 215–232 (1967)

    Google Scholar 

  10. Mizuki, T., Nakayama, S., Sone, H.: An application of st-numbering to secret key agreement. Int. J. Found. Comput. Sci. 22(5), 1211–1227 (2011). https://doi.org/10.1142/S0129054111008659

    Article  MathSciNet  MATH  Google Scholar 

  11. Mizuki, T., Sato, T., Sone, H.: A one-round secure message broadcasting protocol through a key sharing tree. Inf. Process. Lett. 109(15), 842–845 (2009). https://doi.org/10.1016/j.ipl.2009.04.004

    Article  MathSciNet  MATH  Google Scholar 

  12. Nagaraja, S.: Privacy amplification with social networks. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2007. LNCS, vol. 5964, pp. 58–73. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17773-6_7

    Chapter  Google Scholar 

  13. Ošt’ádal, R., Švenda, P., Matyáš, V.: A new approach to secrecy amplification in partially compromised networks (invited paper). In: Chakraborty, R.S., Matyas, V., Schaumont, P. (eds.) SPACE 2014. LNCS, vol. 8804, pp. 92–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12060-7_7

    Google Scholar 

  14. Vernam, G.S.: Cipher printing telegraph systems for secret wire and radio telegraphic communications. Trans. Am. Inst. Electr. Eng. XLV, 295–301 (1926)

    Article  Google Scholar 

  15. Wang, Y., Desmedt, Y.: Secure communication in multicast channels: The answer to franklin and wright’s question. J. Cryptol. 14(2), 121–135 (2001). https://doi.org/10.1007/s00145-001-0002-y

    Article  MathSciNet  MATH  Google Scholar 

  16. Watanabe, S., Matsumoto, R., Uyematsu, T.: Strongly secure privacy amplification cannot be obtained by encoder of slepian-wolf code. IEICE Trans. 93(9), 1650–1659 (2010). http://search.ieice.org/bin/summary.php?id=e93-a_9_1650

    Article  Google Scholar 

Download references

Acknowledgement

We thank the anonymous referees, whose comments have helped us to improve the presentation of the paper. We thank Mr. Shigehiro Matsuda for his valuable discussions. This work was supported by JSPS KAKENHI Grant Number 15K11983.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sasaki, T., Agbor, B.M., Masuda, S., Hayashi, Yi., Mizuki, T., Sone, H. (2018). Secret Key Amplification from Uniformly Leaked Key Exchange Complete Graph. In: Rahman, M., Sung, WK., Uehara, R. (eds) WALCOM: Algorithms and Computation. WALCOM 2018. Lecture Notes in Computer Science(), vol 10755. Springer, Cham. https://doi.org/10.1007/978-3-319-75172-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75172-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75171-9

  • Online ISBN: 978-3-319-75172-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics