Advertisement

Complexity of the Maximum k-Path Vertex Cover Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10755)

Abstract

This paper introduces the maximum version of the k-path vertex cover problem, called the Maximum k-Path Vertex Cover problem (\(\mathsf{{Max}}{P_k}\mathsf{VC}\) for short): A path consisting of k vertices, i.e., a path of length \(k-1\) is called a k-path. If a k-path \(P_k\) includes a vertex v in a vertex set S, then we say that S or v covers \(P_k\). Given a graph \(G = (V, E)\) and an integer s, the goal of \(\mathsf{{Max}}{P_k}\mathsf{VC}\) is to find a vertex subset \(S\subseteq V\) of at most s vertices such that the number of k-paths covered by S is maximized. \(\mathsf{{Max}}{P_k}\mathsf{VC}\) is generally NP-hard. In this paper we consider the tractability/intractability of \(\mathsf{{Max}}{P_k}\mathsf{VC}\) on subclasses of graphs: We prove that \(\mathsf{{Max}}{P_3}\mathsf{VC}\) and \(\mathsf{{Max}}{P_4}\mathsf{VC}\) remain NP-hard even for split graphs and for chordal graphs, respectively. Furthermore, if the input graph is restricted to graphs with constant bounded treewidth, then \(\mathsf{{Max}}{P_3}\mathsf{VC}\) can be solved in polynomial time.

References

  1. 1.
    Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite graphs. Dis. Appl. Math. 165, 37–48 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Betzler, N., Niedermeier, R., Uhlmann, J.: Tree decompositions of graphs: saving memory in dynamic programming. Dis. Optim. 3, 220–229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hans, L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A \({O}(c^k n)\) 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum k-path vertex cover. Dis. Appl. Math. 159(12), 1189–1195 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Camby, E.: Connecting hitting sets and hitting paths in graphs. Ph.D. thesis, Doctoral Thesis (2015)Google Scholar
  7. 7.
    Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: On partial vertex cover and budgeted maximum coverage problems in bipartite graphs. In: IFIP International Conference on Theoretical Computer Science, pp. 13–26. Springer, Heidelberg (2014)Google Scholar
  8. 8.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, vol. B, pp. 193–242 (1990)Google Scholar
  9. 9.
    Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 38, 293–306 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Karp, R.: Reducibility among combinatorial problems. In: Compleixty of Computer Computations, pp. 85–103 (1972)Google Scholar
  11. 11.
    Katrenič, J.: A faster FPT algorithm for 3-path vertex cover. Inf. Process. Lett. 116(4), 273–278 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Li, X., Zhang, Z., Huang, X.: Approximation algorithms for minimum (weight) connected k-path vertex cover. Dis. Appl. Math. 205, 101–108 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted spanning tree problems. J. ACM 29(2), 285–309 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jianhua, T., Jin, Z.: An FPT algorithm for the vertex cover P4 problem. Dis. Appl. Math. 200, 186–190 (2016)CrossRefzbMATHGoogle Scholar
  15. 15.
    Jianhua, T., Zhou, W.: A factor 2 approximation algorithm for the vertex cover P3 problem. Inf. Process. Lett. 111(14), 683–686 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Jianhua, T., Zhou, W.: A primal-dual approximation algorithm for the vertex cover P3 problem. Theor. Comput. Sci. 412(50), 7044–7048 (2011)CrossRefzbMATHGoogle Scholar
  17. 17.
    Xiao, M., Kou, S.: Exact algorithms for the maximum dissociation set and minimum 3-path vertex cover problems. Theor. Comput. Sci. 657, 86–97 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10, 310–327 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Zhang, Z., Li, X., Shi, Y., Nie, H., Zhu, Y.: PTAS for minimum k-path vertex cover in ball graph. Inf. Process. Lett. 119, 9–13 (2017)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kyushu Institute of TechnologyIizukaJapan
  2. 2.Japan Advanced Institute of Science and TechnologyNomiJapan
  3. 3.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations