Post-Quantum Secure Remote Password Protocol from RLWE Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

Secure Remote Password (SRP) protocol is an augmented Password-based Authenticated Key Exchange (PAKE) protocol based on discrete logarithm problem (DLP) with various attractive security features. Compared with basic PAKE protocols, SRP does not require server to store user’s password and user does not send password to server to authenticate. These features are desirable for secure client-server applications. SRP has gained extensive real-world deployment, including Apple iCloud, 1Password etc. However, with the advent of quantum computer and Shor’s algorithm, classic DLP-based public key cryptography algorithms are no longer secure, including SRP. Motivated by importance of SRP and threat from quantum attacks, we propose a RLWE-based SRP protocol (RLWE-SRP) which inherit advantages from SRP and elegant design from RLWE key exchange. We also present parameter choice and efficient portable C++ implementation of RLWE-SRP. Implementation of our 209-bit secure RLWE-SRP is more than 3x faster than 112-bit secure original SRP protocol, 5.5x faster than 80-bit secure J-PAKE and 14x faster than two 184-bit secure RLWE-based PAKE protocols with more desired properties.

Keywords

Post-quantum RLWE SRP PAKE Protocol Implementation 

Notes

Acknowledgement

We would like to thank anonymous reviewers for valuable feedbacks. This work is supported by China Scholarship Council, National Natural Science Foundation of China (Grant No. 61672092) and Fundamental Research Funds for the Central Universities (Grant No. 2017YJS038). Jintai Ding is partially supported by NSF grant DMS-1565748 and US Air Force grant FA2386-17-1-4067.

References

  1. 1.
  2. 2.
    Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange protocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30574-3_14 CrossRefGoogle Scholar
  3. 3.
    Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-29485-8_20 CrossRefGoogle Scholar
  4. 4.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a new hope. IACR Cryptology ePrint Archive 2015, 1092 (2015)Google Scholar
  6. 6.
  7. 7.
    Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks. In: Proceedings of 1992 IEEE Computer Society Symposium on Research in Security and Privacy, pp. 72–84. IEEE (1992)Google Scholar
  8. 8.
    Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan, A., Stebila, D.: Frodo: take off the ring! practical, quantum-secure key exchange from lwe. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1006–1018. ACM (2016)Google Scholar
  9. 9.
    Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the tls protocol from the ring learning with errors problem. In: 2015 IEEE Symposium on Security and Privacy (SP), pp. 553–570. IEEE (2015)Google Scholar
  10. 10.
    Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 156–171. Springer, Heidelberg (2000).  https://doi.org/10.1007/3-540-45539-6_12 CrossRefGoogle Scholar
  11. 11.
    Braithwaite, M.: Experimenting with Post-Quantum Cryptography. https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
  12. 12.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science 2001, pp. 136–145. IEEE (2001)Google Scholar
  13. 13.
    Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols. Commun. ACM 24(8), 533–536 (1981)CrossRefGoogle Scholar
  14. 14.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ding, J., Alsayigh, S., Lancrenon, J., Saraswa, R.V., Snook, M.: Provably secure password authenticated key exchange based on RLWE for the post-quantum world. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-52153-4_11 CrossRefGoogle Scholar
  16. 16.
    Ding, J., Xie, X., Lin, X.: A simple provably secure key exchange scheme based on the learning with errors problem. IACR Cryptology EPrint Archive 2012, 688 (2012)Google Scholar
  17. 17.
    Dousti, M.S., Jalili, R.: Forsakes: a forward-secure authenticated key exchange protocol based on symmetric key-evolving schemes. Adv. Math. Commun. 9(4), 471–514 (2015). http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=11939
  18. 18.
    Goldberg, J.: Three layers of encryption keeps you safe when ssl/tls fails. https://blog.agilebits.com/2017/02/23/three-layers-of-encryption-keeps-you-safe-when-ssltls-fails/
  19. 19.
    Gonzláez, S., Huguet, L., Martínez, C., Villafañe, H.: Discrete logarithm like problems and linear recurring sequences. Adv. Math. Commun. 7(2), 187–195 (2013). http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=8550
  20. 20.
    Hao, F., Ryan, P.Y.A.: Password authenticated key exchange by juggling. In: Christianson, B., Malcolm, J.A., Matyas, V., Roe, M. (eds.) Security Protocols 2008. LNCS, vol. 6615, pp. 159–171. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22137-8_23 CrossRefGoogle Scholar
  21. 21.
    Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10366-7_37 CrossRefGoogle Scholar
  22. 22.
    Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_33 CrossRefGoogle Scholar
  23. 23.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_1 CrossRefGoogle Scholar
  24. 24.
    Micheli, G.: Cryptanalysis of a noncommutative key exchange protocol. Adv. Math. Commun. 9(2), 247–253 (2015). http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=11174
  25. 25.
    Morhaime, M.: Important security update. http://us.blizzard.com/en-us/securityupdate.html
  26. 26.
    Peikert, C.: Lattice cryptography for the internet. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 197–219. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11659-4_12 Google Scholar
  27. 27.
    Perrin, T., Wu, T., Mavrogiannopoulos, N., Taylor, D.: Using the secure remote password (SRP) protocol for TLS authentication. https://tools.ietf.org/html/rfc5054
  28. 28.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 56(6), 34 (2009)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Stephens-Davidowitz, N.: Discrete gaussian sampling reduces to CVP and SVP. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1748–1764. Society for Industrial and Applied Mathematics (2016)Google Scholar
  31. 31.
    Wu, T.D., et al.: The secure remote password protocol. In: NDSS, vol. 98, pp. 97–111 (1998)Google Scholar
  32. 32.
    Zhang, J., Zhang, Z., Ding, J., Snook, M., Dagdelen, Ö.: Authenticated key exchange from ideal lattices. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 719–751. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_24 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Security and Privacy in Intelligent TransportationBeijing Jiaotong UniversityBeijingPeople’s Republic of China
  2. 2.Department of Mathematical SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations