Influence of Error on Hamming Weights for ASCA

  • Chujiao Ma
  • John Chandy
  • Laurent Michel
  • Fanghui Liu
  • Waldemar Cruz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

Algebraic Side-Channel Attack (ASCA) models the cryptographic algorithm and side-channel leakage from the system as a set of equations and solves for the secret key. The attack has low data complexity and can succeed in unknown plaintext/ciphertext scenarios. However, it is susceptible to error and the complexity of the model may drastically increase the runtime as well as the memory consumption. In this paper, we explore the attack by examining the importance of various Hamming weights in terms of success of the attack, which also allows us to gain insights into possible areas of focus for countermeasures, as well as successfully launch ASCA on AES with a larger error tolerance.

Keywords

Algebraic side-channel attack AES Cryptography Block cipher Constraint programming 

References

  1. 1.
    Barenghi, A., Pelosi, G., Teglia, Y.: Improving first order differential power attacks through digital signal processing. In: Proceedings of the 3rd International Conference on Security of Information and Networks, SIN 2010, pp. 124–133. ACM, New York (2010).  https://doi.org/10.1145/1854099.1854126
  2. 2.
    Daemen, J., Rijmen, V.: AES - The Advanced Encryption Standard. Springer, Heidelberg (2002)MATHGoogle Scholar
  3. 3.
    Liu, F., Cruz, W., Ma, C., Johnson, G., Michel, L.: A tolerant algebraic side-channel attack on AES using CP. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 189–205. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66158-2_13 CrossRefGoogle Scholar
  4. 4.
    Fei, H., Daheng, G.: Two kinds of correlation analysis method attack on implementations of advanced encryption standard software running inside STC89C52 microprocessor. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1265–1269, October 2016Google Scholar
  5. 5.
    Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 291–312. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48800-3_12 CrossRefGoogle Scholar
  6. 6.
    Jayasinghe, D., Ragel, R., Ambrose, J.A., Ignjatovic, A., Parameswaran, S.: Advanced modes in AES: are they safe from power analysis based side channel attacks? In: 2014 IEEE 32nd International Conference on Computer Design (ICCD), pp. 173–180, October 2014Google Scholar
  7. 7.
    Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_25 Google Scholar
  8. 8.
    Lu, Y., O’Neill, M.P., McCanny, J.V.: FPGA implementation and analysis of random delay insertion countermeasure against DPA. In: 2008 International Conference on Field-Programmable Technology, pp. 201–208, December 2008Google Scholar
  9. 9.
    Luo, C., Fei, Y., Ding, A.A.: Side-channel power analysis of XTS-AES. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1330–1335, March 2017Google Scholar
  10. 10.
    Mangard, S.: A simple power-analysis (SPA) attack on implementations of the AES key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 343–358. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36552-4_24 CrossRefGoogle Scholar
  11. 11.
    Michel, L.D., Van Hentenryck, P.: Constraint satisfaction over bit-vectors. In: Milano, M. (ed.) CP 2012. LNCS, pp. 527–543. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_39 CrossRefGoogle Scholar
  12. 12.
    Mohamed, M.S.E., Bulygin, S., Zohner, M., Heuser, A., Walter, M., Buchmann, J.: Improved algebraic side-channel attack on AES. J. Cryptogr. Eng. 3(3), 139–156 (2013).  https://doi.org/10.1007/s13389-013-0059-1 CrossRefGoogle Scholar
  13. 13.
    Mpalane, K., Gasela, N., Esiefarienrhe, B.M., Tsague, H.D.: Vulnerability of advanced encryption standard algorithm to differential power analysis attacks implemented on ATmega-128 microcontroller. In: 2016 Third International Conference on Artificial Intelligence and Pattern Recognition (AIPR), pp. 1–5, September 2016Google Scholar
  14. 14.
    Oren, Y., Kirschbaum, M., Popp, T., Wool, A.: Algebraic side-channel analysis in the presence of errors. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 428–442. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15031-9_29 CrossRefGoogle Scholar
  15. 15.
    Oren, Y., Renauld, M., Standaert, F.-X., Wool, A.: Algebraic side-channel attacks beyond the hamming weight leakage model. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 140–154. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33027-8_9 CrossRefGoogle Scholar
  16. 16.
    Oren, Y., Weisse, O., Wool, A.: Practical template-algebraic side channel attacks with extremely low data complexity. In: Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and Privacy, HASP 2013, pp. 7:1–7:8. ACM, New York (2013).  https://doi.org/10.1145/2487726.2487733
  17. 17.
    Oren, Y., Wool, A.: Side-channel cryptographic attacks using pseudo-boolean optimization. Constraints 21(4), 616–645 (2016).  https://doi.org/10.1007/s10601-015-9237-3 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ors, S.B., Gurkaynak, F., Oswald, E., Preneel, B.: Power-analysis attack on an ASIC AES implementation. In: International Conference on Information Technology: Coding and Computing, Proceedings, ITCC 2004, vol. 2, pp. 546–552, April 2004Google Scholar
  19. 19.
    Örs, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an FPGA – first experimental results. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 35–50. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45238-6_4 CrossRefGoogle Scholar
  20. 20.
    Renauld, M., Standaert, F.-X.: Algebraic side-channel attacks. In: Bao, F., Yung, M., Lin, D., Jing, J. (eds.) Inscrypt 2009. LNCS, vol. 6151, pp. 393–410. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-16342-5_29 CrossRefGoogle Scholar
  21. 21.
    Renauld, M., Standaert, F.-X., Veyrat-Charvillon, N.: Algebraic side-channel attacks on the AES: why time also matters in DPA. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 97–111. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04138-9_8 CrossRefGoogle Scholar
  22. 22.
    Song, L., Hu, L., Sun, S., Zhang, Z., Shi, D., Hao, R.: Error-tolerant algebraic side-channel attacks using BEE. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 1–15. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-21966-0_1 CrossRefGoogle Scholar
  23. 23.
    Standaert, F.-X., Mace, F., Peeters, E., Quisquater, J.-J.: Updates on the security of FPGAs against power analysis attacks. In: Bertels, K., Cardoso, J.M.P., Vassiliadis, S. (eds.) ARC 2006. LNCS, vol. 3985, pp. 335–346. Springer, Heidelberg (2006).  https://doi.org/10.1007/11802839_42 CrossRefGoogle Scholar
  24. 24.
    Standaert, F.-X., van Oldeneel tot Oldenzeel, L., Samyde, D., Quisquater, J.-J.: Power analysis of FPGAs: how practical is the attack? In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 701–710. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45234-8_68 CrossRefGoogle Scholar
  25. 25.
    Standaert, F.-X., Örs, S.B., Preneel, B.: Power analysis of an FPGA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 30–44. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28632-5_3 CrossRefGoogle Scholar
  26. 26.
    Standaert, O.X., Peeters, E., Rouvroy, G., Quisquater, J.J.: An overview of power analysis attacks against field programmable gate arrays. Proc. IEEE 94(2), 383–394 (2006)CrossRefGoogle Scholar
  27. 27.
    Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel attacks. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 282–296. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45611-8_15 Google Scholar
  28. 28.
    Zhao, X., Zhang, F., Guo, S., Wang, T., Shi, Z., Liu, H., Ji, K.: MDASCA: an enhanced algebraic side-channel attack for error tolerance and new leakage model exploitation. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 231–248. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29912-4_17 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Chujiao Ma
    • 1
  • John Chandy
    • 1
  • Laurent Michel
    • 1
  • Fanghui Liu
    • 1
  • Waldemar Cruz
    • 1
  1. 1.Computer Science and Engineering Department, School of EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations