Advertisement

BotTokenizer: Exploring Network Tokens of HTTP-Based Botnet Using Malicious Network Traces

  • Biao Qi
  • Zhixin Shi
  • Yan Wang
  • Jizhi Wang
  • Qiwen Wang
  • Jianguo Jiang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

Nowadays, malicious software and especially botnets leverage HTTP protocol as their communication and command (C&C) channels to connect to the attackers and control compromised clients. Due to its large popularity and facility across firewall, the malicious traffic can blend with legitimate traffic and remains undetected. While network signature-based detection systems and models show extraordinary advantages, such as high detection efficiency and accuracy, their scalability and automatization still need to be improved.

In this work, we present BotTokenizer, a novel network signature-based detection system that aims to detect malicious HTTP C&C traffic. BotTokenizer automatically learns recognizable network tokens from known HTTP C&C communications from different botnet families by using words segmentation technologies. In essence, BotTokenizer implements a coarse-grained network signature generation prototype only relying on Uniform Resource Locators (URLs) in HTTP requests. Our evaluation results demonstrate that BotTokenizer performs very well on identifying HTTP-based botnets with an acceptable classification errors.

Keywords

HTTP-based botnet detection Network tokens Words segmentation 

References

  1. 1.
    Antonakakis, M., Demar, J., Stevens, K., Dagon, D.: Unveiling the network criminal infrastructure of TDSS/TDL4. Damballa Research Report 2012 (2012)Google Scholar
  2. 2.
    Chiba, D., Yagi, T., Akiyama, M., Aoki, K., Hariu, T., Goto, S.: BotProfiler: profiling variability of substrings in HTTP requests to detect malware-infected hosts. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 1, pp. 758–765. IEEE (2015)Google Scholar
  3. 3.
    Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical comparison of botnet detection methods. Comput. Secur. 45, 100–123 (2014)CrossRefGoogle Scholar
  4. 4.
    Goebel, J., Holz, T.: Rishi: identify bot contaminated hosts by IRC nickname evaluation. HotBots 7, 8–8 (2007)Google Scholar
  5. 5.
    Goodman, N.: A survey of advances in botnet technologies. arXiv preprint arXiv:1702.01132 (2017)
  6. 6.
    Gu, G., Perdisci, R., Zhang, J., Lee, W., et al.: BotMiner: clustering analysis of network traffic for protocol-and structure-independent botnet detection. In: USENIX Security Symposium, vol. 5, pp. 139–154 (2008)Google Scholar
  7. 7.
    Gu, G., Yegneswaran, V., Porras, P., Stoll, J., Lee, W.: Active botnet probing to identify obscure command and control channels. In: Annual Computer Security Applications Conference, ACSAC 2009, pp. 241–253. IEEE (2009)Google Scholar
  8. 8.
    Gu, G., Zhang, J., Lee, W.: BotSniffer: detecting botnet command and control channels in network traffic (2008)Google Scholar
  9. 9.
    Han, X., Kheir, N., Balzarotti, D.: PhishEye: live monitoring of sandboxed phishing kits. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 1402–1413. ACM (2016)Google Scholar
  10. 10.
    Jang, J., Brumley, D., Venkataraman, S.: BitShred: feature hashing malware for scalable triage and semantic analysis. In: Proceedings of the 18th ACM Conference on Computer and Communications security, pp. 309–320. ACM (2011)Google Scholar
  11. 11.
    Kim, H.A., Karp, B.: Autograph: toward automated, distributed worm signature detection. In: USENIX Security Symposium, San Diego, CA, vol. 286 (2004)Google Scholar
  12. 12.
    Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.: Behavior-based spyware detection. In: USENIX Security, vol. 6 (2006)Google Scholar
  13. 13.
    Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: fast signature generation for zero-day polymorphic worms with provable attack resilience. In: 2006 IEEE Symposium on Security and Privacy, pp. 15. IEEE (2006)Google Scholar
  14. 14.
    Lu, W., Rammidi, G., Ghorbani, A.A.: Clustering botnet communication traffic based on n-gram feature selection. Comput. Commun. 34(3), 502–514 (2011)CrossRefGoogle Scholar
  15. 15.
    Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Identifying suspicious URLs: an application of large-scale online learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 681–688. ACM (2009)Google Scholar
  16. 16.
    Malan, D.J., Smith, M.D.: Host-based detection of worms through peer-to-peer cooperation. In: Proceedings of the 2005 ACM Workshop on Rapid Malcode, pp. 72–80. ACM (2005)Google Scholar
  17. 17.
    Nelms, T., Perdisci, R., Ahamad, M.: ExecScent: mining for new C&C domains in live networks with adaptive control protocol templates. In: USENIX Security, pp. 589–604 (2013)Google Scholar
  18. 18.
    Newsome, J., Karp, B., Song, D.: Polygraph: automatically generating signatures for polymorphic worms. In: 2005 IEEE Symposium on Security and Privacy, pp. 226–241. IEEE (2005)Google Scholar
  19. 19.
    Perdisci, R., Ariu, D., Giacinto, G.: Scalable fine-grained behavioral clustering of HTTP-based malware. Comput. Netw. 57(2), 487–500 (2013)CrossRefGoogle Scholar
  20. 20.
    Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of HTTP-based malware and signature generation using malicious network traces. In: NSDI, vol. 10, p. 14 (2010)Google Scholar
  21. 21.
    Perdisci, R., et al.: VAMO: towards a fully automated malware clustering validity analysis. In: Proceedings of the 28th Annual Computer Security Applications Conference, pp. 329–338. ACM (2012)Google Scholar
  22. 22.
    Rafique, M.Z., Caballero, J.: FIRMA: malware clustering and network signature generation with mixed network behaviors. In: Stolfo, S.J., Stavrou, A., Wright, C.V. (eds.) RAID 2013. LNCS, vol. 8145, pp. 144–163. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-41284-4_8 CrossRefGoogle Scholar
  23. 23.
    Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., Hakimian, P.: Detecting P2P botnets through network behavior analysis and machine learning. In: 2011 Ninth Annual International Conference on Privacy, Security and Trust (PST), pp. 174–180. IEEE (2011)Google Scholar
  24. 24.
    Sakib, M.N., Huang, C.T.: Using anomaly detection based techniques to detect HTTP-based botnet C&C traffic. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)Google Scholar
  25. 25.
    Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In: OSDI, vol. 4, p. 4 (2004)Google Scholar
  26. 26.
    Small, S., Mason, J., Monrose, F., Provos, N., Stubblefield, A.: To catch a predator: a natural language approach for eliciting malicious payloads. In: USENIX Security Symposium, pp. 171–184 (2008)Google Scholar
  27. 27.
    Sourdis, I., Pnevmatikatos, D.: Fast, large-scale string match for a 10 Gbps FPGA-based network intrusion detection system. In: Y. K. Cheung, P., Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 880–889. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45234-8_85 CrossRefGoogle Scholar
  28. 28.
    Spitzner, L.: The honeynet project: trapping the hackers. IEEE Secur. Priv. 99(2), 15–23 (2003)CrossRefGoogle Scholar
  29. 29.
    Wang, K., Cretu, G., Stolfo, S.J.: Anomalous payload-based worm detection and signature generation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS, vol. 3858, pp. 227–246. Springer, Heidelberg (2006).  https://doi.org/10.1007/11663812_12 CrossRefGoogle Scholar
  30. 30.
    Wang, X., Zheng, K., Niu, X., Wu, B., Wu, C.: Detection of command and control in advanced persistent threat based on independent access. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE (2016)Google Scholar
  31. 31.
    Witten, I.H., Paynter, G.W., Frank, E., Gutwin, C., Nevill-Manning, C.G.: KEA: practical automatic keyphrase extraction. In: Proceedings of the Fourth ACM Conference on Digital Libraries, pp. 254–255. ACM (1999)Google Scholar
  32. 32.
    Wurzinger, P., Bilge, L., Holz, T., Goebel, J., Kruegel, C., Kirda, E.: Automatically generating models for botnet detection. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 232–249. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04444-1_15 CrossRefGoogle Scholar
  33. 33.
    Xie, Y., Yu, F., Achan, K., Panigrahy, R., Hulten, G., Osipkov, I.: Spamming botnets: signatures and characteristics. ACM SIGCOMM Comput. Commun. Rev. 38(4), 171–182 (2008)CrossRefGoogle Scholar
  34. 34.
    Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-wide information flow for malware detection and analysis. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 116–127. ACM (2007)Google Scholar
  35. 35.
    Zand, A., Vigna, G., Yan, X., Kruegel, C.: Extracting probable command and control signatures for detecting botnets. In: Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 1657–1662. ACM (2014)Google Scholar
  36. 36.
    Zarras, A., Papadogiannakis, A., Gawlik, R., Holz, T.: Automated generation of models for fast and precise detection of http-based malware. In: 2014 Twelfth Annual International Conference on Privacy, Security and Trust (PST), pp. 249–256. IEEE (2014)Google Scholar
  37. 37.
    Zeidanloo, H.R., Manaf, A.B.A.: Botnet detection by monitoring similar communication patterns. arXiv preprint arXiv:1004.1232 (2010)
  38. 38.
    Zeng, Y., Hu, X., Shin, K.G.: Detection of botnets using combined host-and network-level information. In: 2010 IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 291–300. IEEE (2010)Google Scholar
  39. 39.
    Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., Luo, X.: Detecting stealthy P2P botnets using statistical traffic fingerprints. In: 2011 IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN), pp. 121–132. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Biao Qi
    • 1
    • 2
  • Zhixin Shi
    • 1
  • Yan Wang
    • 1
    • 2
  • Jizhi Wang
    • 1
    • 2
  • Qiwen Wang
    • 1
    • 2
  • Jianguo Jiang
    • 1
  1. 1.Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations