Advertisement

Constant Decryption-Cost Non-monotonic Ciphertext Policy Attribute-Based Encryption with Reduced Secret Key Size (and Dynamic Attributes)

  • Geng Wang
  • Xiao Zhang
  • Yanmei Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

Attribute-based encryption, especially ciphertext policy attribute based encryption (CP-ABE), is a standard method for achieving access control using cryptography. The access control policy is determined by access structure in a CP-ABE scheme. If negative permission is required in the access control model, which is a quite common setting, then non-monotonic access structures must be allowed in the CP-ABE scheme.

In 2011, Chen et al. proposed a CP-ABE scheme with non-monotonic access structures that has constant decryption cost. However, it requires a secret key size linear to the number of total attributes, which is hard to implement when the resources are limited for both computation and storage. In this paper, we improve this scheme to get a CP-ABE scheme where access structure is non-monotonic AND-gate, while the secret key size is only linear to the number of attributes held by a user, without increasing the decryption cost. This scheme will be useful if the total attributes are much more than attributes for each user. Our scheme is provably secure for selective CPA-security under the decision n-BDHE assumption. We also show that our scheme can be naturally extended to supporting attribute addition and revocation, where the attribute set of each user can be updated dynamically, without any complicated proxy re-encryption or decryption procedure.

Keywords

Attribute-based encryption Short secret-key Non-monotonic access structure Attribute revocation 

Notes

Acknowledgement

This work is partially supported by Foundation of Science and Technology on Information Assurance Laboratory under Grant 6142112010202.

References

  1. 1.
    Attrapadung, N.: Dual system encryption via doubly selective security: framework, fully secure functional encryption for regular languages, and more. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 557–577. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_31 CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N.: Dual System Encryption Framework in Prime-Order Groups. IACR Cryptology ePrint Archive 2015 (2015). 390Google Scholar
  3. 3.
    Attrapadung, N., Hanaoka, G., Matsumoto, T., Teruya, T., Yamada, S.: Attribute based encryption with direct efficiency tradeoff. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 249–266. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39555-5_14 Google Scholar
  4. 4.
    Attrapadung, N., Hanaoka, G., Yamada, S.: Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 575–601. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48797-6_24 CrossRefGoogle Scholar
  5. 5.
    Attrapadung, N., Yamada, S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 87–105. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16715-2_5 Google Scholar
  6. 6.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_26 CrossRefGoogle Scholar
  7. 7.
    Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revocation. In: Proceedings of the 15th ACM Conference on Computer and Communications Security, pp. 417–426. ACM (2008)Google Scholar
  8. 8.
    Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE (2007)Google Scholar
  9. 9.
    Chase, M.: Multi-authority attribute based encryption. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 515–534. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_28 CrossRefGoogle Scholar
  10. 10.
    Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 50–67. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36095-4_4 CrossRefGoogle Scholar
  11. 11.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24676-3_13 CrossRefGoogle Scholar
  12. 12.
    Cheung, L., Newport, C.: Provably secure ciphertext policy ABE. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 456–465. ACM (2007)Google Scholar
  13. 13.
    Chen, C., Zhang, Z., Feng, D.: Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In: Boyen, X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 84–101. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-24316-5_8 CrossRefGoogle Scholar
  14. 14.
    Emura, K., Miyaji, A., Nomura, A., Omote, K., Soshi, M.: A ciphertext-policy attribute-based encryption scheme with constant ciphertext length. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451, pp. 13–23. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00843-6_2 CrossRefGoogle Scholar
  15. 15.
    Fujisaki, E., Okamoto, T.: How to enhance the security of public-key encryption at minimum cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-49162-7_5 CrossRefGoogle Scholar
  16. 16.
    Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute based encryption. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_47 CrossRefGoogle Scholar
  17. 17.
    Guo, F., Mu, Y., Susilo, W., et al.: CP-ABE with constant-size keys for lightweight devices. IEEE Trans. Inf. Forensics Secur. 9(5), 763–771 (2014)CrossRefGoogle Scholar
  18. 18.
    Goyal, V., Pandey, O., Sahai, A., et al.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  19. 19.
    Herranz, J., Laguillaumie, F., Ràfols, C.: Constant size ciphertexts in threshold attribute-based encryption. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 19–34. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_2 CrossRefGoogle Scholar
  20. 20.
    Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data outsourcing systems. IEEE Trans. Parallel Distrib. Syst. 22(7), 1214–1221 (2011)CrossRefGoogle Scholar
  21. 21.
    Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Mediated ciphertext-policy attribute-based encryption and its application. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 309–323. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10838-9_23 CrossRefGoogle Scholar
  22. 22.
    Jahid, S., Mittal, P., Borisov, N.: EASiER: encryption-based access control in social networks with efficient revocation. In: Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, pp. 411–415. ACM (2011)Google Scholar
  23. 23.
    Lai, J., Deng, R.H., Liu, S., Kou, W.: Efficient CCA-secure PKE from identity-based techniques. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 132–147. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11925-5_10 CrossRefGoogle Scholar
  24. 24.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_4 CrossRefGoogle Scholar
  25. 25.
    Lewko, A., Sahai, A., Waters, B.: Revocation systems with very small private keys. In: IEEE Symposium on Security and Privacy (SP), pp. 273–285. IEEE (2010)Google Scholar
  26. 26.
    Odelu, V., Das, A.K., Rao, Y.S., et al.: Pairing-based CP-ABE with constant-size ciphertexts and secret keys for cloud environment. Comput. Stan. Interfaces (2016)Google Scholar
  27. 27.
    Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-monotonic access structures. In: Proceedings of the 14th ACM Conference on Computer and Communications Security, pp. 195–203. ACM (2007)Google Scholar
  28. 28.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer and Communications Security, pp. 463–474. ACM (2013)Google Scholar
  29. 29.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27 CrossRefGoogle Scholar
  30. 30.
    Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient, and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_4 CrossRefGoogle Scholar
  31. 31.
    Wang, G., Liu, Q., Wu, J.: Hierarchical attribute-based encryption for fine-grained access control in cloud storage services. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 735–737. ACM (2010)Google Scholar
  32. 32.
    Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: Generic constructions for chosen-ciphertext secure attribute based encryption. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 71–89. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_5 CrossRefGoogle Scholar
  33. 33.
    Yang, K., Jia, X.: DAC-MACS: effective data access control for multi-authority cloud storage systems. In: Security for Cloud Storage Systems, pp. 59–83. Springer, New York (2014).  https://doi.org/10.1007/978-1-4614-7873-7_4 CrossRefGoogle Scholar
  34. 34.
    Yang, K., Jia, X., Ren, K.: Attribute-based fine-grained access control with efficient revocation in cloud storage systems. In: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security, pp. 523–528. ACM (2013)Google Scholar
  35. 35.
    Yu, S., Wang, C., Ren, K., et al.: Attribute based data sharing with attribute revocation. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, pp. 261–270. ACM (2010)Google Scholar
  36. 36.
    Zhang, Y., Zheng, D., Chen, X., Li, J., Li, H.: Computationally efficient ciphertext-policy attribute-based encryption with constant-size ciphertexts. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 259–273. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-12475-9_18 Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Technology on Information Assurance LaboratoryBeijingPeople’s Republic of China

Personalised recommendations