Parallel Long Messages Encryption Scheme Based on Certificateless Cryptosystem for Big Data

  • Xuguang Wu
  • Yiliang Han
  • Minqing Zhang
  • Shuaishuai Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

In big data environment, the quantity of generated and stored data is huge, and the size is larger than before. A general solution to encrypt large messages is to adopt the hybrid encryption method, that is, one uses an asymmtric cryptosystem to encrypt the symmetric key, and needs a symmetric cryptosystem to encrypt the real message. To eliminate this requirement for an additional cryptosystem, a parallel long message encryption scheme based on certificateless cryptosystem is proposed, which eliminates the needs for public key certificates, and avoids the key escrow problem. In combination with parallel computer hardware, we further improve the performance. The simulation results show that it can make full use of CPU resources and has high efficiency advantages. In the random oracle model, the presented scheme is secure in a One-Way Encryption (OWE) model.

Keywords

Certificateless cryptosystem Parallel encryption Long messages encryption Big data 

Notes

Acknowledgments

This work is supported by National Cryptology Develepment Foundation of China (No: MMJJ20170112), National Nature Science Foundation of China under grant 61572521, Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6353), and Basic Research Plan of Engineering College of the Chinese Armed Police Force (WJY201523, WJY201613).

References

  1. 1.
    Hashem, I.A.T., Chang, V., Anuar, N.B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E., Chiroma, H.: The role of big data in smart city. Int. J. Inf. Manage. 36(5), 748–758 (2016)CrossRefGoogle Scholar
  2. 2.
    Hamlin, A., Schear, N., Shen, E., Varia, M., Yakoubov, S., Yerukhimovich, A.: Cryptography for big data security. Big Data Storage Sharing Secur. 3S, 241–288 (2016)CrossRefGoogle Scholar
  3. 3.
    Gurrin, C., Smeaton, A.F., Doherty, A.R.: Lifelogging: personal big data. Found. Trends Inf. Retr. 8(1), 1–125 (2014)CrossRefGoogle Scholar
  4. 4.
    Chen, M., Mao, S., Liu, Y.: Big data: a survey. Mob. Netw. Appl. 19(2), 171–209 (2014)CrossRefGoogle Scholar
  5. 5.
    Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 26(1), 96–99 (1983)CrossRefMATHGoogle Scholar
  7. 7.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Waters, B.: Efficient identity-based encryption without random oracles. Eurocrypt 3494, 114–127 (2005)MathSciNetMATHGoogle Scholar
  9. 9.
    Giri, D., Barua, P., Srivastava, P.D., Jana, B.: A cryptosystem for encryption and decryption of long confidential messages. In: Bandyopadhyay, S.K., Adi, W., Kim, T., Xiao, Y. (eds.) ISA 2010. CCIS, vol. 76, pp. 86–96. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13365-7_9 CrossRefGoogle Scholar
  10. 10.
    Hwang, M.S., Chang, C.C., Hwang, K.F.: An ElGamal-like cryptosystem for enciphering large messages. IEEE Trans. Knowl. Data Eng. 14(2), 445–446 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Zhong, S.: An efficient and secure cryptosystem for encrypting long messages. Fundam. Informaticae 71(4), 493–497 (2006)MathSciNetMATHGoogle Scholar
  12. 12.
    Wang, M.N., Yen, S.M., Wu, C.D., Lin, C.T.: Cryptanalysis on an Elgamal-like cryptosystem for encrypting large messages. In: Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications, pp. 418–422 (2006)Google Scholar
  13. 13.
    Chang, T.Y., Hwang, M.S., Yang, W.P.: Cryptanalysis on an improved version of ElGamal-like public-key encryption scheme for encrypting large messages. Informatica 23(4), 537–562 (2012)MathSciNetMATHGoogle Scholar
  14. 14.
    Jena, D., Panigrahy, S.K., Jena, S.K.: A novel and efficient cryptosystem for long message encryption. In: Proceedings of International Conference on Industrial and Information Systems, p. 79 (2009)Google Scholar
  15. 15.
    Yang, G., Liu, J.: Threshold public key cryptosystem for encrypting long messages. J. Comput. Inf. Syst. 11(2), 671–681 (2015)Google Scholar
  16. 16.
    Liu, J., Zhong, S., Han, L., Yao, H.: An identity-based cryptosystem for encrypting long messages. Int. J. Innov. Comput. Inf. Control 7(6), 3295–3301 (2011)Google Scholar
  17. 17.
    Ferguson, N., Schneier, B., Kohno, T.: Cryptography engineering: design principles and practical applications (2011)Google Scholar
  18. 18.
    Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. Asiacrypt 2894, 452–473 (2003)MathSciNetMATHGoogle Scholar
  19. 19.
    Pieprzyk, J., Pointcheval, D.: Parallel authentication and public-key encryption. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 387–401. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-45067-X_33 CrossRefGoogle Scholar
  20. 20.
    Han, Y., Gui, X., Wu, X.: Parallel multi-recipient signcryption for imbalanced wireless networks. Int. J. Innov. Comput. Inf. Control 6(8), 3621–3630 (2010)Google Scholar
  21. 21.
    Zhang, M., Wu, X., Han, Y., Guo, Y.: Secure group communication based on distributed parallel ID-based proxy re-encryption. In: 2013 32nd Chinese Control Conference (CCC), pp. 6364–6367 (2013)Google Scholar
  22. 22.
  23. 23.
    Lynn, B.: PBC: the pairing-based cryptography library (2011). https://crypto.stanford.edu/pbc/
  24. 24.
    Mavroyanopoulos, N., Schumann, S.: Mhash library. http://mhash.sourceforge.net/
  25. 25.
    Di Crescenzo, G., Ostrovsky, R., Rajagopalan, S.: Conditional oblivious transfer and timed-release encryption. EuroCrypt 99, 74–89 (1999)MathSciNetMATHGoogle Scholar
  26. 26.
    Barbosa, M., Farshim, P.: Certificateless signcryption. In: Proceedings of the 2008 ACM Symposium on Information, Computer and Communications Security. ACM (2008)Google Scholar
  27. 27.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44647-8_13 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Xuguang Wu
    • 1
  • Yiliang Han
    • 1
  • Minqing Zhang
    • 1
  • Shuaishuai Zhu
    • 1
  1. 1.Engineering University of China Armed Police ForceXianChina

Personalised recommendations