A Universal Designated Multi-Verifier Transitive Signature Scheme

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

A Universal Designated Verifier Transitive Signature (\(\mathrm {UDVTS}\)) scheme is designed for the graph-based big data system. Specifically, it allows a transitive signature holder to convince the designated verifier with a transitive signature. Nevertheless, existing \(\mathrm {UDVTS}\) schemes cannot be directly employed in the scenarios when multi-verifier are involved. Thus, in this paper, we extend the notion to the Universal Designated Multi-Verifier Transitive Signature (\(\mathrm {UDMVTS}\)) scheme. Namely, our new scheme allows a transitive signature holder to designate the signature to multi-verifier. Furthermore, for the proposed scheme, we formalize its security notions and prove its security in the random oracle model. We also analyse the performance of our scheme to demonstrate its efficiency.

Keywords

Universal designated multi-verifier signature Transitive signature Privacy 

Notes

Acknowledgment

This work is supported by National Natural Science Foundation of China (61472083, 61402110, 61771140), Program for New Century Excellent Talents in Fujian University (JA14067), Distinguished Young Scholars Fund of Fujian (2016J06013), and Fujian Normal University Innovative Research Team (NO. IRTL1207).

References

  1. 1.
    Baek, J., Safavi-Naini, R., Susilo, W.: Universal designated verifier signature proof (or how to efficiently prove knowledge of a signature). In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 644–661. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593447_35 CrossRefGoogle Scholar
  2. 2.
    Bao, F., Deng, R., Zhou, J. (eds.): PKC 2004. LNCS, vol. 2947. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24632-9 MATHGoogle Scholar
  3. 3.
    Barreto, P.S.L.M., Kim, H.Y.: Fast hashing onto elliptic curves over fields of characteristic 3. IACR Cryptology ePrint Archive 2001, 98 (2001). http://eprint.iacr.org/2001/098
  4. 4.
    Bellare, M., Neven, G.: Transitive signatures based on factoring and RSA. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_25 CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Neven, G.: Transitive signatures: new schemes and proofs. IEEE Trans. Inf. Theor. 51(6), 2133–2151 (2005)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_30 CrossRefGoogle Scholar
  7. 7.
    Camacho, P., Hevia, A.: Short transitive signatures for directed trees. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 35–50. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-27954-6_3 CrossRefGoogle Scholar
  8. 8.
    Chen, X., Chen, G., Zhang, F., Wei, B., Mu, Y.: Identity-based universal designated verifier signature proof system. Int. J. Netw. Secur. 8(1), 52–58 (2009)Google Scholar
  9. 9.
    Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gong, Z., Huang, Z., Qiu, W., Chen, K.: Transitive signature scheme from LFSR. J. Inf. Sci. Eng. 26(1), 131–143 (2010)MathSciNetMATHGoogle Scholar
  11. 11.
    Gray, J.: Jim Gray on eScience: a transformed scientific method. In: Based on the transcript of a talk given by Jim Gray to the NRC-CSTB in Mountain View, CA, 11 January 2007. The Fourth Paradigm: Data-Intensive Scientific Discovery (2009)Google Scholar
  12. 12.
    Hohenberger, S.: The cryptographic impact of groups with infeasible inversion. Master’s thesis. MIT (2003)Google Scholar
  13. 13.
    Hou, S., Huang, X., Liu, J.K., Li, J., Xu, L.: Universal designated verifier transitive signatures for graph-based big data. Inf. Sci. 318, 144–156 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Huang, X., Susilo, W., Mu, Y., Wu, W.: Universal designated verifier signature without delegatability. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 479–498. Springer, Heidelberg (2006).  https://doi.org/10.1007/11935308_34 CrossRefGoogle Scholar
  15. 15.
    Huang, X., Susilo, W., Mu, Y., Wu, W.: Secure universal designated verifier signature without random oracles. Int. J. Inf. Secur. 7(3), 171–183 (2008)CrossRefGoogle Scholar
  16. 16.
    Huang, X., Susilo, W., Mu, Y., Zhang, F.: Restricted universal designated verifier signature. In: Ma, J., Jin, H., Yang, L.T., Tsai, J.J.-P. (eds.) UIC 2006. LNCS, vol. 4159, pp. 874–882. Springer, Heidelberg (2006).  https://doi.org/10.1007/11833529_89 CrossRefGoogle Scholar
  17. 17.
    Laguillaumie, F., Libert, B., Quisquater, J.-J.: Universal designated verifier signatures without random oracles or non-black box assumptions. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 63–77. Springer, Heidelberg (2006).  https://doi.org/10.1007/11832072_5 CrossRefGoogle Scholar
  18. 18.
    Laguillaumie, F., Vergnaud, D.: On the soundness of restricted universal designated verifier signatures and dedicated signatures. In: Garay, J.A., Lenstra, A.K., Mambo, M., Peralta, R. (eds.) ISC 2007. LNCS, vol. 4779, pp. 175–188. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-75496-1_12 CrossRefGoogle Scholar
  19. 19.
    Li, J., Wang, Y.: Universal designated verifier ring signature (proof) without random oracles. In: Zhou, X., et al. (eds.) EUC 2006. LNCS, vol. 4097, pp. 332–341. Springer, Heidelberg (2006).  https://doi.org/10.1007/11807964_34 CrossRefGoogle Scholar
  20. 20.
    Lin, C., Wu, W., Huang, X., Xu, L.: A new universal designated verifier transitive signature scheme for big graph data. J. Comput. Syst. Sci. 83(1), 73–83 (2017)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Micali, S., Rivest, R.L.: Transitive signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 236–243. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_16 CrossRefGoogle Scholar
  22. 22.
    Ming, Y., Wang, Y.: Universal designated multi verifier signature scheme without random oracles. Wuhan Univ. J. Nat. Sci. 13(6), 685–691 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Neven, G.: A simple transitive signature scheme for directed trees. Theoret. Comput. Sci. 396(1–3), 277–282 (2008)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Shahandashti, S.F., Safavi-Naini, R.: Generic constructions for universal designated-verifier signatures and identity-based signatures from standard signatures. IET Inf. Secur. 3(4), 152–176 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Shailaja, G., Kumar, K.P., Saxena, A.: Universal designated multi verifier signature without random oracles. In: Mohanty, S.P., Sahoo, A. (eds.) ICIT, pp. 168–171. IEEE Computer Society (2006)Google Scholar
  26. 26.
    Steinfeld, R., Bull, L., Wang, H., Pieprzyk, J.: Universal designated-verifier signatures. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 523–542. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40061-5_33 CrossRefGoogle Scholar
  27. 27.
    Steinfeld, R., Wang, H., Pieprzyk, J.: Efficient extension of standard Schnorr/RSA signatures into universal designated-verifier signatures. In: Bao et al. [2], pp. 86–100Google Scholar
  28. 28.
    Wang, L., Cao, Z., Zheng, S., Huang, X., Yang, Y.: Transitive signatures from braid groups. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 183–196. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-77026-8_14 CrossRefGoogle Scholar
  29. 29.
    Willy, C.Y.N., Susilo, W., Mu, Y.: Universal designated multi verifier signature schemes. In: Proceedings of the 11th International Conference on Parallel and Distributed Systems, vol. 2, pp. 305–309. IEEE (2005)Google Scholar
  30. 30.
    Xu, J.: On directed transitive signature. IACR Cryptology ePrint Archive 2009, 209 (2009). http://eprint.iacr.org/2009/209
  31. 31.
    Yi, X.: Directed transitive signature scheme. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 129–144. Springer, Heidelberg (2006).  https://doi.org/10.1007/11967668_9 CrossRefGoogle Scholar
  32. 32.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao et al. [2], pp. 277–290Google Scholar
  33. 33.
    Zhang, F., Susilo, W., Mu, Y., Chen, X.: Identity-based universal designated verifier signatures. In: Enokido, T., Yan, L., Xiao, B., Kim, D., Dai, Y., Yang, L.T. (eds.) EUC 2005. LNCS, vol. 3823, pp. 825–834. Springer, Heidelberg (2005).  https://doi.org/10.1007/11596042_85 CrossRefGoogle Scholar
  34. 34.
    Zhang, R., Furukawa, J., Imai, H.: Short signature and universal designated verifier signature without random oracles. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 483–498. Springer, Heidelberg (2005).  https://doi.org/10.1007/11496137_33 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fei Zhu
    • 1
  • Yuexin Zhang
    • 2
  • Chao Lin
    • 1
  • Wei Wu
    • 1
  • Ru Meng
    • 3
  1. 1.Fujian Provincial Key Laboratory of Network Security and Cryptology, School of Mathematics and InformaticsFujian Normal UniversityFuzhouChina
  2. 2.School of Software and Electrical EngineeringSwinburne University of TechnologyHawthornAustralia
  3. 3.School of Computer ScienceShaanxi Normal UniversityXi’anChina

Personalised recommendations