A New Constant-Size Accountable Ring Signature Scheme Without Random Oracles

  • Sudhakar Kumawat
  • Souradyuti Paul
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)


Accountable ring signature (ARS), introduced by Xu and Yung (CARDIS 2004), combines many useful properties of ring and group signatures. In particular, the signer in an ARS scheme has the flexibility of choosing an ad hoc group of users, and signing on their behalf (like a ring signature). Furthermore, the signer can designate an opener who may later reveal his identity, if required (like a group signature). In 2015, Bootle et al. (ESORICS 2015) formalized the notion and gave an efficient construction for ARS with signature-size logarithmic in the size of the ring. Their scheme is proven to be secure in the random oracle model. Recently, Russell et al. (ESORICS 2016) gave a construction with constant signature-size that is secure in the standard model. Their scheme is based on q-type assumptions (q-SDH).

In this paper, we give a new construction for ARS having the following properties: signature is constant-sized, secure in the standard model, and based on indistinguishability obfuscation \((\mathcal {\textit{i}O})\) and one-way functions. To the best of our knowledge, this is the first \(\mathcal {\textit{i}O}\)-based ARS scheme. Independent of this, our work can be viewed as a new application of puncturable programming and hidden sparse trigger techniques introduced by Sahai and Waters (STOC 2014) to design \(\mathcal {\textit{i}O}\)-based deniable encryption.


Accountable ring signatures Indistinguishability obfuscation Puncturable PRFs 



First author is supported by Tata Consultancy Services (TCS) research fellowship. We thank anonymous reviewers for their constructive comments.


  1. 1.
    Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part III. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  4. 4.
    Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J., Petit, C.: Short accountable ring signatures based on DDH. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015, Part I. LNCS, vol. 9326, pp. 243–265. Springer, Cham (2015). CrossRefGoogle Scholar
  5. 5.
    Bose, P., Das, D., Rangan, C.P.: Constant size ring signature without random oracle. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 230–247. Springer, Cham (2015). CrossRefGoogle Scholar
  6. 6.
    Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Haralambiev, K., Kohlweiss, M., Lapon, J., Naessens, V.: Structure preserving CCA secure encryption and applications. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 89–106. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  8. 8.
    Camenisch, J.: Efficient and generalized group signatures. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 465–479. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  9. 9.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). CrossRefGoogle Scholar
  10. 10.
    Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  11. 11.
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS), pp. 40–49. IEEE (2013)Google Scholar
  12. 12.
    Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York (2009)MATHGoogle Scholar
  13. 13.
    Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S.: Probabilistic encryption & how to play mental poker keeping secret all partial information. In: Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pp. 365–377. ACM (1982)Google Scholar
  15. 15.
    Groth, J., Kohlweiss, M.: One-out-of-many proofs: or how to leak a secret and spend a coin. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 253–280. Springer, Heidelberg (2015). Google Scholar
  16. 16.
    Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 669–684. ACM (2013)Google Scholar
  17. 17.
    Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016, Part I. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016). CrossRefGoogle Scholar
  18. 18.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  19. 19.
    Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 475–484. ACM (2014)Google Scholar
  20. 20.
    Xu, S., Yung, M.: Accountable ring signatures: a smart card approach. In: Quisquater, J.J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) Smart Card Research and Advanced Applications VI. IFIP AICT, vol. 153. Springer, Boston (2004). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Indian Institute of Technology GandhinagarGandhinagarIndia
  2. 2.Indian Institute of Technology BhilaiDatrengaIndia

Personalised recommendations