Advertisement

Identity-Based Key-Insulated Aggregate Signatures, Revisited

  • Nobuaki Kitajima
  • Naoto Yanai
  • Takashi Nishide
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10726)

Abstract

Identity-based key-insulated cryptography is a cryptography which allows a user to update an exposed secret key by generating a temporal secret key as long as the user can keep any string as its own public key. In this work, we consider the following question; namely, can we construct aggregate signatures whereby individual signatures can be aggregated into a single signature in an identity-based key-insulated setting? We call such a scheme identity-based key-insulated aggregate signatures (IBKIAS), and note that constructing an IBKIAS scheme is non-trivial since one can aggregate neither each signer’s randomness nor components depending on the temporal secret keys. To overcome this problem, we utilize the synchronized technique proposed by Gentry and Ramzan (PKC’06) for both aas state information and a partial secret key generated by a secure device. We then show that the proposed scheme is still provably secure under an adaptive security model of identity-based aggregate signatures.

Keywords

Key-insulated signatures Identity-based signatures Aggregate signatures 

Notes

Acknowledgment

We would like to thank the anonymous reviewers for their helpful comments. This work was supported in part by JSPS KAKENHI Grant Numbers 16K16065 and 17K00178, and Secom Science and Technology Foundation.

References

  1. 1.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_26 CrossRefGoogle Scholar
  2. 2.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_5 CrossRefGoogle Scholar
  3. 3.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36288-6_10 CrossRefGoogle Scholar
  4. 4.
    Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006).  https://doi.org/10.1007/11745853_17 CrossRefGoogle Scholar
  5. 5.
    Hanaoka, Y., Hanaoka, G., Shikata, J., Imai, H.: Identity-based hierarchical strongly key-insulated encryption and its application. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 495–514. Springer, Heidelberg (2005).  https://doi.org/10.1007/11593447_27 CrossRefGoogle Scholar
  6. 6.
    Hohenberger, S., Koppula, V., Waters, B.: Universal signature aggregators. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 3–34. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_1 Google Scholar
  7. 7.
    Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 494–512. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_27 CrossRefGoogle Scholar
  8. 8.
    Liang, B., Li, H., Chang, J.: The generic transformation from standard signatures to identity-based aggregate signatures. In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 21–41. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23318-5_2 CrossRefGoogle Scholar
  9. 9.
    Reddy, P.V., Gopal, P.V.S.S.N.: Identity-based key-insulated aggregate signature scheme. J. King Saud University Comput. Inf. Sci. 2015, 1–8 (2015).  https://doi.org/10.1016/j.jksuci.2015.09.003 Google Scholar
  10. 10.
    Watanabe, Y., Shikata, J.: Identity-based hierarchical key-insulated encryption without random oracles. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 255–279. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49384-7_10 CrossRefGoogle Scholar
  11. 11.
    Weng, J., Liu, S., Chen, K., Li, X.: Identity-based key-insulated signature with secure key-updates. In: Lipmaa, H., Yung, M., Lin, D. (eds.) Inscrypt 2006. LNCS, vol. 4318, pp. 13–26. Springer, Heidelberg (2006).  https://doi.org/10.1007/11937807_2 CrossRefGoogle Scholar
  12. 12.
    Zhao, S., Aggarwal, A., Frost, R., Bai, X.: A survey of applications of identity-based cryptography in mobile ad-hoc networks. IEEE Commun. Surv. Tutorials 14(2), 380–400 (2012)CrossRefGoogle Scholar
  13. 13.
    Zhao, H., Yu, J., Duan, S., Cheng, X., Hao, R.: Key-insulated aggregate signature. Front. Comput. Sci. 8(5), 837–846 (2014).  https://doi.org/10.1007/s11704-014-3244-1 MathSciNetCrossRefGoogle Scholar
  14. 14.
    Zhou, Y., Cao, Z., Chai, Z.: Identity based key insulated signature. In: Chen, K., Deng, R., Lai, X., Zhou, J. (eds.) ISPEC 2006. LNCS, vol. 3903, pp. 226–234. Springer, Heidelberg (2006).  https://doi.org/10.1007/11689522_21 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nobuaki Kitajima
    • 1
    • 2
  • Naoto Yanai
    • 3
    • 4
  • Takashi Nishide
    • 2
  1. 1.Tata Consultancy Services Japan, Ltd.TokyoJapan
  2. 2.University of TsukubaTsukubaJapan
  3. 3.Osaka UniversityOsakaJapan
  4. 4.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations