Advertisement

The Antares Explosion Observed by the USArray: An Unprecedented Collection of Infrasound Phases Recorded from the Same Event

  • Julien VergozEmail author
  • Alexis Le Pichon
  • Christophe Millet
Chapter

Abstract

On October 28, 2014, the launch of the Antares 130 rocket failed just after liftoff from Wallops Flight Facility, Virginia. In addition to one infrasound station of the International Monitoring Network (IMS), the explosion was largely recorded by the Transportable USArray (TA) up to distances of 1000 km. Overall, 180 infrasound arrivals were identified as tropospheric, stratospheric or thermospheric phases on 74 low-frequency sensors of the TA. The range of celerity for those phases is exceptionally broad, from 360 m/s for some tropospheric arrivals, down to 160 m/s for some thermospheric arrivals. Ray tracing simulations provide a consistent description of infrasound propagation. Using phase-dependent propagation tables, the source location is found 2 km east of ground truth information with a difference in origin time of 2 s. The detection capability of the TA at the time of the event is quantified using a frequency-dependent semiempirical attenuation. By accounting for geometrical spreading and dissipation, an accurate picture of the ground return footprint of stratospheric arrivals as well as the wave attenuation are recovered. The high-quality data and unprecedented amount and variety of observed infrasound phases represents a unique dataset for statistically evaluating atmospheric models, numerical propagation modeling, and localization methods which are used as effective verification tools for the nuclear explosion monitoring regime.

References

  1. Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727.  https://doi.org/10.1121/1.1804966CrossRefGoogle Scholar
  2. Assink JD, Waxler R, Drob D (2012) On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides. J Geophys Res 117:D01110.  https://doi.org/10.1029/2011JD016107CrossRefGoogle Scholar
  3. Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  4. Brachet N, Brown D, Le Bras R, Cansi Y, Mialle P, Coyne J (2009) Monitoring the Earth’s atmosphere with the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (ed) Infrasound monitoring for atmospheric studies. Springer, New York, pp 77–118. ISBN 978–1-4020-9508-5Google Scholar
  5. Brown DJ et al (2002) Infrasonic signal detection and source location at the prototype international data center, pure and appl. Geophys. 159:1081–1125Google Scholar
  6. Candel SM (1977) Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics. J Fluid Mech 83(3):465–493CrossRefGoogle Scholar
  7. Cansi Y (1995) An automatic seismic event processing for detection and location—the PMCC method. Geophys Res Lett 22(9):1021–1024CrossRefGoogle Scholar
  8. Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across central Europe. Geophys J Int 177:491–508CrossRefGoogle Scholar
  9. Che IY, Le Pichon A, Kim K, Shin IC (2017) Assessing the detection capability of a dense infrasound network in the southern Korean Peninsula. Geophys J Int 210:1105–1114.  https://doi.org/10.1093/gji/ggx222CrossRefGoogle Scholar
  10. Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590Google Scholar
  11. Cugnet D, de la Camara A, Lott F, Millet C, Ribstein B (2019) Non-orographic gravity waves: representation in climate models and effects on infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 827--844Google Scholar
  12. De Groot-Hedlin C, Hedlin M (2014) Infrasound detection of the Chelyabinsk meteor at the USArray. Earth Planet Sci Lett 402:337–345.  https://doi.org/10.1016/j.epsl.2014.01.031CrossRefGoogle Scholar
  13. De Groot-Hedlin CD, Hedlin MAH (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203:960–971.  https://doi.org/10.1093/gji/ggv345CrossRefGoogle Scholar
  14. De Groot-Hedlin CD (2017) Infrasound propagation in tropospheric ducts and acoustic shadow zones. J Acoust Soc Am 142:1816.  https://doi.org/10.1121/1.5005889CrossRefGoogle Scholar
  15. de Groot-Hedlin C, Hedlin M (2019) Detection of infrasound signals and sources using a dense seismic network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 669–699Google Scholar
  16. Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res 108:4680.  https://doi.org/10.1029/2002JD003307CrossRefGoogle Scholar
  17. Drob DP et al (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113.  https://doi.org/10.1029/2008ja013668CrossRefGoogle Scholar
  18. Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J Geophys Res Atmos 118:3933–3943.  https://doi.org/10.1029/2012JD018077CrossRefGoogle Scholar
  19. Edwards WN, de Groot-Hedlin CD, Hedlin MAH (2014) Forensic investigation of a probable meteor sighting using USArray acoustic data. Seism Res Lett 85:1012–1018.  https://doi.org/10.1785/0220140056CrossRefGoogle Scholar
  20. Evers LG, Haak HW (2007) Infrasonic forerunners: exceptionally fast acoustic phases. Geophys Res Lett 34:L10806.  https://doi.org/10.1029/2007GL029353CrossRefGoogle Scholar
  21. Fee D et al (2013) Overview of the 2009 and 2011 Sayarim Infrasound calibration experiments. J Geophys Res Atmos 118:6122–6143.  https://doi.org/10.1002/jgrd.50398CrossRefGoogle Scholar
  22. Gainville O, Blanc-Benon P, Blanc E, Roche R, Millet C, Le Piver F, Despres B, and Piserchia PF (2009) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (ed) infrasound monitoring for atmospheric studies. Springer, New York, pp 575–598. ISBN 978-1-4020-9508-5Google Scholar
  23. Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135:255–263CrossRefGoogle Scholar
  24. Garcés MA (2013) On infrasound standards, part 1: time, frequency, and energy scaling. InfraMatics 2:13–35.  https://doi.org/10.4236/inframatics.2013.22002, http://www.scirp.org/journal/PaperInformation.aspx?PaperID=33802CrossRefGoogle Scholar
  25. Garces M (2019) Explosion source models. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 273–345Google Scholar
  26. Gardner CS, Hostetler CA, Franke SJ (1993) Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations. J Geophys Res 98(D1):1035–1049.  https://doi.org/10.1029/92JD02051CrossRefGoogle Scholar
  27. Gibbons SJ et al (2015) The European Arctic: a laboratory for seismo-acoustic studies. Seism Soc Am 86:917–928.  https://doi.org/10.1785/0220140230CrossRefGoogle Scholar
  28. Green D, Le Pichon A, Ceranna L, Evers L (2009) Ground truth events: Assessing the capability of infrasound networks using high resolution data analyses. In Le Pichon A, Blanc E, Hauchecorne A (ed) Infrasound monitoring for atmospheric studies. Springer, New York, pp 599–625. ISBN 978-1-4020-9508-5Google Scholar
  29. Green D, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. J Int, Geophys.  https://doi.org/10.1111/j.1365-246X.2011.04975.xCrossRefGoogle Scholar
  30. Kim K, Rodgers A (2016) Waveform inversion of acoustic waves for explosion yield estimation. Geophys Res Lett 43:6883–6890CrossRefGoogle Scholar
  31. Kinney G, Graham K (1985) Explosive Shocks in Air, 2nd edn. Springer, New YorkCrossRefGoogle Scholar
  32. Kulichkov SN (2009) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. In Le Pichon A, Blanc E, Hauchecorne A (ed) Infrasound Monitoring for atmospheric studies. Springer, New York, pp 511–540. ISBN 978-1-4020-9508-5Google Scholar
  33. Kulichkov SN, Chunchuzov IP, Popov OI (2010) Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv Russ Acad Sci Atmos Ocean Phys Engl Trans 46(1):60–68.  https://doi.org/10.1134/s0001433810010093CrossRefGoogle Scholar
  34. Le Pichon A, Blanc E, Drob D (2005) Probing high-altitude winds using infrasound. J Geophys Res 110:D20104.  https://doi.org/10.1029/2005JD006020CrossRefGoogle Scholar
  35. Le Pichon A, Ceranna L, Vergoz J (2012), Incorporating numerical modelling into estimates of the detection capability of the IMS infrasound network. J Geophys Res.  https://doi.org/10.1029/2011jd0166702009
  36. Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40:3732–3737.  https://doi.org/10.1002/grl.50619CrossRefGoogle Scholar
  37. Le Pichon A et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models. J Geophys Res Atmos 120.  https://doi.org/10.1002/2015jd023273Google Scholar
  38. Lighthill MJ (1963) Jet Noise. AIAA J 1(7):1507–1517.  https://doi.org/10.2514/3.1848CrossRefGoogle Scholar
  39. Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  40. Merchant BJ (2015) Hyperion 5113/GP infrasound sensor evaluation. Sandia Report SAND2015–7075, Sandia National LaboratoriesGoogle Scholar
  41. Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248Google Scholar
  42. Millet C, Robinet J-C, Roblin C (2007) On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34:L14814.  https://doi.org/10.1029/2007GL029449CrossRefGoogle Scholar
  43. NASA (2015) Independent Review Team. Orb–3 Accident Investigation Report Executive Summary, Oct 9. https://www.nasa.gov/sites/default/files/atoms/files/orb3_irt_execsumm_0.pdf
  44. Nippress A, Green DN, Marcillo OE, and Arrowsmith SJ (2014) Generating regional infrasound celerity-range models using ground-truth information and the implications for event location. Geophys J Int 197(2):1154–1165. https://doi.org/10.1029/2007GL029449
  45. Picone JM et al (2002) NRL-MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107. https://doi.org/10.1093/gji/ggu049CrossRefGoogle Scholar
  46. Pierce AD, Posey JW, Moo CA (1973) Generation and propagation of infrasonic waves, Air Force Cambridge Research Laboratories, Massachusetts Institute of Technology, Report AD-766472, 131 pGoogle Scholar
  47. Pulli JJ, Kofford A (2015) Infrasound analysis of the October 28, 2014, Antares rocket failure at Wallops Island, Virginia, using video recordings as ground truth. J Acoust Soc Am 137.  https://doi.org/10.1121/1.4920619CrossRefGoogle Scholar
  48. Raspet R, Abbott J-P, Webster J, Yu J, Talmadge C, Alberts II K, Collier S, Noble J (2019) New systems for wind noise reduction for infrasonic measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 91–124 Google Scholar
  49. Reed JW (1977) Atmospheric attenuation of explosion waves. J Acoust Soc Am 61:39–47CrossRefGoogle Scholar
  50. Sabatini R, Marsden O, Bailly C, Bogey C (2016) A numerical study of nonlinear infrasound propagation in a windy atmosphere. J Acoust Soc Am 140.  https://doi.org/10.1121/1.4958998CrossRefGoogle Scholar
  51. Smart E, Flinn EA (1971) Fast frequency-Wavenumber analysis and Fisher signal detection in real time infrasonic array data processing. Geophys J Roy Astr Soc 26:279–284CrossRefGoogle Scholar
  52. Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115(3):1012–1032,  https://doi.org/10.1121/1.1631937CrossRefGoogle Scholar
  53. Talmadge C, Waxler R, Di X, Gilbert K, Kulichkov S (2008) Observation of low-frequency acoustic surface waves in the nocturnal boundary layer. J Acoust Soc Am 124.  https://doi.org/10.1121/1.2967474CrossRefGoogle Scholar
  54. Varnier J (2001) Experimental study and simulation of rocket engine free jet noise. AIAA J 39(10):1851–1859.  https://doi.org/10.2514/2.1199CrossRefGoogle Scholar
  55. Virieux J, Garnier N, Blanc E, Dessa J-X (2004) Paraxial ray tracing for atmospheric wave propagation. Geophys Res Lett 31:L20106.  https://doi.org/10.1029/2004GL020514CrossRefGoogle Scholar
  56. Walker KT, Hedlin M (2009) A review of wind-noise reduction methodologies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) infrasound monitoring for atmospheric studies. Springer, New York, pp 141–182. ISBN 978-1-4020-9508-5Google Scholar
  57. Walker KT, Shelby R, Hedlin MAH, deGroot-Hedlin C, Vernon F (2011) Western U.S. Infrasonic Catalog: Illuminating infrasonic hot spots with the USArray. J Geophys Res 116:B12305.  https://doi.org/10.1029/2011jb008579
  58. Waxler R, Evers L, Assink J, Blom P (2015) The stratospheric arrival pair in infrasound propagation. J Acoust Soc Am 137:4.  https://doi.org/10.1121/1.4916718CrossRefGoogle Scholar
  59. Waxler R (2003) Modal expansions for sound propagation in the nocturnal boundary layer. J Acoust Soc Am 115.  https://doi.org/10.1121/1.1646137CrossRefGoogle Scholar
  60. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  61. Whitaker RW, Sandoval TD, Mutschlecner JP (2003) Recent infrasound analysis. In: Proceedings of the 25th annual seismic research symposium in Tucson, AZ, pp 646–654Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Julien Vergoz
    • 1
    Email author
  • Alexis Le Pichon
    • 1
  • Christophe Millet
    • 1
  1. 1.CEA, DAM, DIFArpajonFrance

Personalised recommendations