Skip to main content

Infrasound Signal Detection: Re-examining the Component Parts that Makeup Detection Algorithms

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

Detecting a Signal Of Interest (SOI) is the first step in many applications of infrasound monitoring. This intuitively simple task is defined as separating out signals from background noise on the basis of the characteristics of observed data; it is, however, deceptively complex. The problem of detecting signals requires multiple processes that are divisible at their highest level into several fundamental tasks. These tasks include (1) defining models for SOIs and noise that properly fit the observations, (2) finding SOIs amongst noise, and (3) estimating parameters of the SOI (e.g., Direction Of Arrival (DOA), Signal-to-Noise Ratio (SNR) and confidence intervals) that can be used for signal characterization. Each of these components involves multiple subcomponents. Here, we explore these three components by examining current infrasound detection algorithms and the assumptions that are made for their operation and exploring and discussing alternative approaches to advance the performance and efficiency of detection operations. This chapter does not address new statistical methods but does offer some insights into the detection problem that may motivate further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723

    Article  Google Scholar 

  • Anderson JF, Johnson JB, Arechiga RO, Thomas RJ (2014) Mapping thunder sources by inverting acoustic and electromagnetic observations. J Geophys Res: Atmos 119(23):13,287–213,304

    Google Scholar 

  • Arrowsmith S (2018) False alarms and the IMS infrasound network: Towards a quantitative understanding of the factors influencing the creation of false events. Geophys J Int (Submitted)

    Google Scholar 

  • Arrowsmith S, Euler G, Marcillo O, Blom P, Whitaker R, Randall G (2015) Development of a robust and automated infrasound event catalogue using the International Monitoring System. Geophys J Int 200(3):1411–1422

    Article  Google Scholar 

  • Arrowsmith S, Nippress A, Green D (2017) False alarms and the IMS infrasound network: towards a quantitative understanding of the factors influencing the creation of false events. Geophys J Int (In Prep)

    Google Scholar 

  • Arrowsmith SJ, Taylor SR (2013) Multivariate acoustic detection of small explosions using Fisher’s combined probability test. J Acoust Soc Am 133(3):El168–El173

    Article  Google Scholar 

  • Arrowsmith SJ, Whitaker R, Katz C, Hayward C (2009) The F-detector revisited: an improved strategy for signal detection at seismic and infrasound arrays. Bull Seismol Soc Am 99(1):449–453

    Article  Google Scholar 

  • Blandford RR (1974) Automatic event detector at Tonto-Forest seismic observatory. Geophysics 39(5):633–643

    Article  Google Scholar 

  • Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32(9):1–5

    Article  Google Scholar 

  • Brachet N, Brown D, Le Bras R, Cansi Y, Mialle P, Coyne J (2010) Monitoring the earth’s atmosphere with the global IMS infrasound network. In: Infrasound monitoring for atmospheric studies, Springer, pp 77–118

    Google Scholar 

  • Brown DJ, Katz CN, Wang J, Whitaker RW (2000) Tuning of automatic signal detection algorithms for IMS style infrasound arrays. In: 22nd Annual DoD/DoE seismic research symposium, New Orleans, LA, DTIC Document

    Google Scholar 

  • Brown DJ, Whitaker R, Kennett BLN, Tarlowski C (2008) Automatic infrasonic signal detection using the Hough transform. J Geophys Res: Atmos 113(D17):D17105

    Article  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. Method. Geophys Res Lett 22(9):1021–1024

    Article  Google Scholar 

  • Cansi Y, Pichon AL (2008) Infrasound event detection using the progressive multi-channel correlation algorithm. In: Havelock D, Kuwano S, Vorländer, M (eds) Handbook of signal processing in acoustics. Springer, New York, NY, pp 1425–1435

    Chapter  Google Scholar 

  • Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418

    Article  Google Scholar 

  • Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177(2):491–508

    Article  Google Scholar 

  • Ceranna L, Matoza R, Hupe P, Le Pichon A, Landès M (2019) Systematic array processing of a decade of global IMS infrasound data. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 471–482

    Google Scholar 

  • Charbit M (2017) Digital Signal Processing (DSP) with python programming. Wiley

    Google Scholar 

  • Charbit MJ, Mialle P (2015) Application of the framework for detection software evaluation. In: CTBT: science and technology 2015 conference. Vienna, Austria, T3.3-P5

    Google Scholar 

  • Christie DR, Campus P (2009) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer Netherlands, Dordrecht, pp 29–75

    Google Scholar 

  • Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310(3–4):369–379

    Article  Google Scholar 

  • Dahlman O, Israelson H, Wagner H (1971) Ground motion and atmospheric pressure waves from nuclear explosions. Nat-Phys Sci 232(30):79–+

    Article  Google Scholar 

  • Don WL, Ewing M (1962) Atmospheric waves from nuclear explosions. J Geophys Res 67(5):1855–&

    Google Scholar 

  • Donn WL, Ewing M (1962) Atmospheric waves from nuclear explosions. 2. The soviet test of 30 October 1961. J Atmos Sci 19(3):264–273

    Article  Google Scholar 

  • Donn WL, Naini B (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78(21):4482–4488

    Article  Google Scholar 

  • Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res 108(D21):1–12

    Article  Google Scholar 

  • Fee D, Matoza RS (2013) An overview of volcano infrasound: from Hawaiian to Plinian, local to global. J Volcanol Geoth Res 249:123–139

    Article  Google Scholar 

  • Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garces M, Drob D, Kleinert D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 Sayarim infrasound calibration experiments. J Geophys Res-Atmos 118(12):6122–6143

    Article  Google Scholar 

  • Fehr U (1967) Measurements of infrasound from artificial and natural sources. J Geophys Res 72(9):2403–2417

    Article  Google Scholar 

  • Green DN (2015) The spatial coherence structure of infrasonic waves: analysis of data from international monitoring system arrays. Geophys J Int 201(1):377–389

    Article  Google Scholar 

  • Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185(2):890–910

    Article  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer, New York

    Google Scholar 

  • Kay SM (2013) Fundamentals of statistical signal processing: practical algorithm development. Pearson Education

    Google Scholar 

  • Kohl B, Bennett TJ, Bondár I, Barker B, Nagy W, Reasoner C (2005) Development of a network data set for evaluating detection and network processing performance. In: 27th seismic research review: ground-based nuclear explosion monitoring technologies, Rancho Mirage, CA

    Google Scholar 

  • Krim H, Viberg M (1996) Two decades of array signal processing research—the parametric approach. IEEE Signal Process Mag 13(4):67–94

    Article  Google Scholar 

  • Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res 117(D6):D06102

    Article  Google Scholar 

  • Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40(14):3732–3737

    Article  Google Scholar 

  • Lee DC, Olson JV, Szuberla CAL (2013) Computationally robust and noise resistant numerical detector for the detection of atmospheric infrasound. J Acoust Soc Am 134(1):862–868

    Article  Google Scholar 

  • Mack H, Flinn EA (1971) Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere. Geophys J Int 26(1–4):255–269

    Google Scholar 

  • Marcillo O, Arrowsmith S, Blom P, Jones K (2015) On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. J Geophys Res: Atmos 120(19):9855–9868

    Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077

    Google Scholar 

  • Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248

    Google Scholar 

  • Morgan S, Raspet R (1992) Investigation of the mechanisms of low-frequency wind noise generation outdoors. J Acoust Soc Am 92(2):1180–1183

    Article  Google Scholar 

  • Neidell NS, Taner MT, Koehler F (1969) Semblance and other coherency measures for multichannel data. Geophysics 34(6):1012–&

    Google Scholar 

  • Nouvellet A, Charbit M, Le Pichon A, Roueff F, Che IY (2013) Coherence parameters estimation from noisy observations. In: Infrasound technology workshop, Vienna

    Google Scholar 

  • Olson JV, Szuberla CAL (2009) Processing infrasonic array data. In: Handbook of signal processing in acoustics, pp 1487–1496

    Chapter  Google Scholar 

  • Park J, Arrowsmith SJ, Hayward C, Stump BW, Blom P (2014) Automatic infrasound detection and location of sources in the western United States. J Geophys Res: Atmos 119(13):7773–7798

    Google Scholar 

  • Park J, Hayward CT, Zeiler CP, Arrowsmith SJ, Stump BW (2017) Assessment of infrasound detectors based on analyst review, environmental effects, and detection characteristics. Bull Seismol Soc Am 107(2):674–690

    Article  Google Scholar 

  • Park J, Stump BW, Hayward C, Arrowsmith SJ, Che IY, Drob DP (2016) Detection of regional infrasound signals using array data: testing, tuning, and physical interpretation. J Acoust Soc Am 140(1):239–259

    Article  Google Scholar 

  • Pilger C, Ceranna L (2017) The influence of periodic wind turbine noise on infrasound array measurements. J Sound Vib 388:188–200

    Article  Google Scholar 

  • Richards MA (2005) Fundamentals of radar signal processing. McGraw-Hill

    Google Scholar 

  • Runco AM Jr, Louthain JA, Clauter DA (2014) Optimizing the PMCC algorithm for infrasound and seismic nuclear treaty monitoring. Open J Acoust 4(04):204

    Article  Google Scholar 

  • Schmidt RO (1986) Multiple emitter location and signal parameter-estimation. IEEE Trans Antennas Propag 34(3):276–280

    Article  Google Scholar 

  • Scott, DW (2008) Kernel density estimators. In: Multivariate density estimation. Wiley, pp 125–193

    Google Scholar 

  • Silber E, Brown P (2019) Infrasound monitoring as a tool to characterize impacting near-earth objects (NEOs). In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 939–986

    Google Scholar 

  • Shumway RH, Kim S-E, Blandfor R (1999) Nonlinear estimation for time series observed on arrays. In: Ghosh S (ed) Asymptotics, nonparametrics, and time series. CRC Press, p 227

    Google Scholar 

  • Shumway RH, Smart E, Clauter DA (2008) Mixed signal processing for regional and teleseismic arrays. Bull Seismol Soc Am 98(1):36–51

    Article  Google Scholar 

  • Stopa JE, Cheung KF, GarcÈs MA, Fee D (2011) Source of microbaroms from tropical cyclone waves. Geophys Res Lett 38(5):L05602

    Article  Google Scholar 

  • Taylor SR, Arrowsmith SJ, Anderson DN (2013) Development of a matched filter detector for acoustic signals at local distances from small explosions. J Acoust Soc Am 134(1):El84–El90

    Article  Google Scholar 

  • Walker KT (2012) Evaluating the opposing wave interaction hypothesis for the generation of microbaroms in the eastern North Pacific. J Geophys Res-Ocean 117

    Article  Google Scholar 

  • Wit E, van den Heuvel E, Romeijn JW (2012) All models are wrong…’: an introduction to model uncertainty. Stat Neerl 66(3):217–236

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Marcillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcillo, O., Arrowsmith, S., Charbit, M., Carmichael, J. (2019). Infrasound Signal Detection: Re-examining the Component Parts that Makeup Detection Algorithms. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_7

Download citation

Publish with us

Policies and ethics