Infrasound Signal Detection: Re-examining the Component Parts that Makeup Detection Algorithms

  • Omar MarcilloEmail author
  • Stephen Arrowsmith
  • Maurice Charbit
  • Joshua Carmichael


Detecting a Signal Of Interest (SOI) is the first step in many applications of infrasound monitoring. This intuitively simple task is defined as separating out signals from background noise on the basis of the characteristics of observed data; it is, however, deceptively complex. The problem of detecting signals requires multiple processes that are divisible at their highest level into several fundamental tasks. These tasks include (1) defining models for SOIs and noise that properly fit the observations, (2) finding SOIs amongst noise, and (3) estimating parameters of the SOI (e.g., Direction Of Arrival (DOA), Signal-to-Noise Ratio (SNR) and confidence intervals) that can be used for signal characterization. Each of these components involves multiple subcomponents. Here, we explore these three components by examining current infrasound detection algorithms and the assumptions that are made for their operation and exploring and discussing alternative approaches to advance the performance and efficiency of detection operations. This chapter does not address new statistical methods but does offer some insights into the detection problem that may motivate further research.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Anderson JF, Johnson JB, Arechiga RO, Thomas RJ (2014) Mapping thunder sources by inverting acoustic and electromagnetic observations. J Geophys Res: Atmos 119(23):13,287–213,304Google Scholar
  3. Arrowsmith S (2018) False alarms and the IMS infrasound network: Towards a quantitative understanding of the factors influencing the creation of false events. Geophys J Int (Submitted)Google Scholar
  4. Arrowsmith S, Euler G, Marcillo O, Blom P, Whitaker R, Randall G (2015) Development of a robust and automated infrasound event catalogue using the International Monitoring System. Geophys J Int 200(3):1411–1422CrossRefGoogle Scholar
  5. Arrowsmith S, Nippress A, Green D (2017) False alarms and the IMS infrasound network: towards a quantitative understanding of the factors influencing the creation of false events. Geophys J Int (In Prep)Google Scholar
  6. Arrowsmith SJ, Taylor SR (2013) Multivariate acoustic detection of small explosions using Fisher’s combined probability test. J Acoust Soc Am 133(3):El168–El173CrossRefGoogle Scholar
  7. Arrowsmith SJ, Whitaker R, Katz C, Hayward C (2009) The F-detector revisited: an improved strategy for signal detection at seismic and infrasound arrays. Bull Seismol Soc Am 99(1):449–453CrossRefGoogle Scholar
  8. Blandford RR (1974) Automatic event detector at Tonto-Forest seismic observatory. Geophysics 39(5):633–643CrossRefGoogle Scholar
  9. Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32(9):1–5CrossRefGoogle Scholar
  10. Brachet N, Brown D, Le Bras R, Cansi Y, Mialle P, Coyne J (2010) Monitoring the earth’s atmosphere with the global IMS infrasound network. In: Infrasound monitoring for atmospheric studies, Springer, pp 77–118Google Scholar
  11. Brown DJ, Katz CN, Wang J, Whitaker RW (2000) Tuning of automatic signal detection algorithms for IMS style infrasound arrays. In: 22nd Annual DoD/DoE seismic research symposium, New Orleans, LA, DTIC DocumentGoogle Scholar
  12. Brown DJ, Whitaker R, Kennett BLN, Tarlowski C (2008) Automatic infrasonic signal detection using the Hough transform. J Geophys Res: Atmos 113(D17):D17105CrossRefGoogle Scholar
  13. Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. Method. Geophys Res Lett 22(9):1021–1024CrossRefGoogle Scholar
  14. Cansi Y, Pichon AL (2008) Infrasound event detection using the progressive multi-channel correlation algorithm. In: Havelock D, Kuwano S, Vorländer, M (eds) Handbook of signal processing in acoustics. Springer, New York, NY, pp 1425–1435CrossRefGoogle Scholar
  15. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418CrossRefGoogle Scholar
  16. Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177(2):491–508CrossRefGoogle Scholar
  17. Ceranna L, Matoza R, Hupe P, Le Pichon A, Landès M (2019) Systematic array processing of a decade of global IMS infrasound data. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 471–482Google Scholar
  18. Charbit M (2017) Digital Signal Processing (DSP) with python programming. WileyGoogle Scholar
  19. Charbit MJ, Mialle P (2015) Application of the framework for detection software evaluation. In: CTBT: science and technology 2015 conference. Vienna, Austria, T3.3-P5Google Scholar
  20. Christie DR, Campus P (2009) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer Netherlands, Dordrecht, pp 29–75Google Scholar
  21. Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310(3–4):369–379CrossRefGoogle Scholar
  22. Dahlman O, Israelson H, Wagner H (1971) Ground motion and atmospheric pressure waves from nuclear explosions. Nat-Phys Sci 232(30):79–+CrossRefGoogle Scholar
  23. Don WL, Ewing M (1962) Atmospheric waves from nuclear explosions. J Geophys Res 67(5):1855–&Google Scholar
  24. Donn WL, Ewing M (1962) Atmospheric waves from nuclear explosions. 2. The soviet test of 30 October 1961. J Atmos Sci 19(3):264–273CrossRefGoogle Scholar
  25. Donn WL, Naini B (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78(21):4482–4488CrossRefGoogle Scholar
  26. Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res 108(D21):1–12CrossRefGoogle Scholar
  27. Fee D, Matoza RS (2013) An overview of volcano infrasound: from Hawaiian to Plinian, local to global. J Volcanol Geoth Res 249:123–139CrossRefGoogle Scholar
  28. Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garces M, Drob D, Kleinert D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 Sayarim infrasound calibration experiments. J Geophys Res-Atmos 118(12):6122–6143CrossRefGoogle Scholar
  29. Fehr U (1967) Measurements of infrasound from artificial and natural sources. J Geophys Res 72(9):2403–2417CrossRefGoogle Scholar
  30. Green DN (2015) The spatial coherence structure of infrasonic waves: analysis of data from international monitoring system arrays. Geophys J Int 201(1):377–389CrossRefGoogle Scholar
  31. Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185(2):890–910CrossRefGoogle Scholar
  32. Jolliffe IT (2002) Principal component analysis. Springer, New YorkGoogle Scholar
  33. Kay SM (2013) Fundamentals of statistical signal processing: practical algorithm development. Pearson EducationGoogle Scholar
  34. Kohl B, Bennett TJ, Bondár I, Barker B, Nagy W, Reasoner C (2005) Development of a network data set for evaluating detection and network processing performance. In: 27th seismic research review: ground-based nuclear explosion monitoring technologies, Rancho Mirage, CAGoogle Scholar
  35. Krim H, Viberg M (1996) Two decades of array signal processing research—the parametric approach. IEEE Signal Process Mag 13(4):67–94CrossRefGoogle Scholar
  36. Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res 117(D6):D06102CrossRefGoogle Scholar
  37. Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40(14):3732–3737CrossRefGoogle Scholar
  38. Lee DC, Olson JV, Szuberla CAL (2013) Computationally robust and noise resistant numerical detector for the detection of atmospheric infrasound. J Acoust Soc Am 134(1):862–868CrossRefGoogle Scholar
  39. Mack H, Flinn EA (1971) Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere. Geophys J Int 26(1–4):255–269Google Scholar
  40. Marcillo O, Arrowsmith S, Blom P, Jones K (2015) On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. J Geophys Res: Atmos 120(19):9855–9868Google Scholar
  41. Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  42. Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077 Google Scholar
  43. Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248Google Scholar
  44. Morgan S, Raspet R (1992) Investigation of the mechanisms of low-frequency wind noise generation outdoors. J Acoust Soc Am 92(2):1180–1183CrossRefGoogle Scholar
  45. Neidell NS, Taner MT, Koehler F (1969) Semblance and other coherency measures for multichannel data. Geophysics 34(6):1012–&Google Scholar
  46. Nouvellet A, Charbit M, Le Pichon A, Roueff F, Che IY (2013) Coherence parameters estimation from noisy observations. In: Infrasound technology workshop, ViennaGoogle Scholar
  47. Olson JV, Szuberla CAL (2009) Processing infrasonic array data. In: Handbook of signal processing in acoustics, pp 1487–1496CrossRefGoogle Scholar
  48. Park J, Arrowsmith SJ, Hayward C, Stump BW, Blom P (2014) Automatic infrasound detection and location of sources in the western United States. J Geophys Res: Atmos 119(13):7773–7798Google Scholar
  49. Park J, Hayward CT, Zeiler CP, Arrowsmith SJ, Stump BW (2017) Assessment of infrasound detectors based on analyst review, environmental effects, and detection characteristics. Bull Seismol Soc Am 107(2):674–690CrossRefGoogle Scholar
  50. Park J, Stump BW, Hayward C, Arrowsmith SJ, Che IY, Drob DP (2016) Detection of regional infrasound signals using array data: testing, tuning, and physical interpretation. J Acoust Soc Am 140(1):239–259CrossRefGoogle Scholar
  51. Pilger C, Ceranna L (2017) The influence of periodic wind turbine noise on infrasound array measurements. J Sound Vib 388:188–200CrossRefGoogle Scholar
  52. Richards MA (2005) Fundamentals of radar signal processing. McGraw-HillGoogle Scholar
  53. Runco AM Jr, Louthain JA, Clauter DA (2014) Optimizing the PMCC algorithm for infrasound and seismic nuclear treaty monitoring. Open J Acoust 4(04):204CrossRefGoogle Scholar
  54. Schmidt RO (1986) Multiple emitter location and signal parameter-estimation. IEEE Trans Antennas Propag 34(3):276–280CrossRefGoogle Scholar
  55. Scott, DW (2008) Kernel density estimators. In: Multivariate density estimation. Wiley, pp 125–193Google Scholar
  56. Silber E, Brown P (2019) Infrasound monitoring as a tool to characterize impacting near-earth objects (NEOs). In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 939–986Google Scholar
  57. Shumway RH, Kim S-E, Blandfor R (1999) Nonlinear estimation for time series observed on arrays. In: Ghosh S (ed) Asymptotics, nonparametrics, and time series. CRC Press, p 227Google Scholar
  58. Shumway RH, Smart E, Clauter DA (2008) Mixed signal processing for regional and teleseismic arrays. Bull Seismol Soc Am 98(1):36–51CrossRefGoogle Scholar
  59. Stopa JE, Cheung KF, GarcÈs MA, Fee D (2011) Source of microbaroms from tropical cyclone waves. Geophys Res Lett 38(5):L05602CrossRefGoogle Scholar
  60. Taylor SR, Arrowsmith SJ, Anderson DN (2013) Development of a matched filter detector for acoustic signals at local distances from small explosions. J Acoust Soc Am 134(1):El84–El90CrossRefGoogle Scholar
  61. Walker KT (2012) Evaluating the opposing wave interaction hypothesis for the generation of microbaroms in the eastern North Pacific. J Geophys Res-Ocean 117CrossRefGoogle Scholar
  62. Wit E, van den Heuvel E, Romeijn JW (2012) All models are wrong…’: an introduction to model uncertainty. Stat Neerl 66(3):217–236CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Omar Marcillo
    • 1
    Email author
  • Stephen Arrowsmith
    • 2
  • Maurice Charbit
    • 3
  • Joshua Carmichael
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Sandia National LaboratoriesAlbuquerqueUSA
  3. 3.Telecom ParisParisFrance

Personalised recommendations