Geoacoustic Observations on Drifting Balloon-Borne Sensors

  • Daniel BowmanEmail author
  • Jonathan Lees
  • James Cutts
  • Attila Komjathy
  • Eliot Young
  • Kayla Seiffert
  • Mark Boslough
  • Stephen Arrowsmith


Infrasound microphones on free flying balloons experience very little wind noise, can cross regions that lack ground station coverage, and may capture signals that seldom reach the Earth’s surface. Despite the promise of this technique, until recently very few studies had been performed on balloon-borne acoustic sensors. We summarize the history of free flying infrasound stations from the late 1940s to 2014 and report on results from a series of studies spanning 2014–2016. These include the first efforts to record infrasound in the stratosphere in half a century, the presence of a persistent ocean microbarom peak that is not always visible on the ground, and the detection of distant ground explosions. We discuss the unique operational aspects of deploying infrasound sensors on free flying balloons, the types of signals detected at altitude, and the changes to sensor response with height. Finally, we outline the applications of free flying infrasound sensing systems, including treaty verification, bolide detection, upper atmosphere monitoring, and seismoacoustic exploration of the planet Venus.



Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, or Sandia National Laboratories.


  1. Ames Research Staff (1953) Equations, tables, and charts for compressible flow. Technical report, National advisory committee for aeronautics. Report 1135Google Scholar
  2. Anderson JF, Johnson JB, Arechiga R, Thomas R (2014) Mapping thunder sources by inverting acoustic and electromagnetic observations. J Geophys Res Atmos 119:13287–13304CrossRefGoogle Scholar
  3. Anderson JF., Johnson JB, Bowman DC, Ronan TJ (2018) The Gem infrasound logger and custom-built instrumentation. Seismol Res Lett 89(1):153–164CrossRefGoogle Scholar
  4. Anderson WJ, Taback I (1991) Oscillation of high altitude balloons. J Aircr 28(9):606–608CrossRefGoogle Scholar
  5. Ando H, Imamura T, Tsuda T, Tellman S, Pätzold M, Häusler B (2015) Vertical wavenumber specra of gravity waves in the Venus atmospher obtained from Venus express radio occultation data: evidence for saturation. J Atmos Sci 72:2318–2329CrossRefGoogle Scholar
  6. Balachandran NK (1983) Acoustic and electric signals from lightning. J Geophys Res 88(C6):3879–3884CrossRefGoogle Scholar
  7. Banister JR, Hereford WV (1991) Observed high-altitude pressure waves from an underground and a surface explosion. J Geophys Res 96(D3):5185–5193CrossRefGoogle Scholar
  8. Barat C, Cot C, Sidi C (1984) On the measurement of the turbulence dissipation rate from rising balloons. J Atmos Ocean Technol 1:270–275CrossRefGoogle Scholar
  9. Barr R, Llanwyn Jones D, Rodger CJ (2000) ELF and VLF radio waves. J Atmos Solar-Terr Phys 62:1689–1718CrossRefGoogle Scholar
  10. Barthol P, Gandorfer A, Solanki SK, Schüssler M, Chares B, Curdt W, Deutsch W, Feller A, Germerott D, Grauf B, Heerlein K, Hirzberger J, Kolleck M, Meller R, Muller R, Riethmüller TL, Tomasch G, Knölker M, Lites BW, Card G, Elmore D, Fox J, Lecinski, A, Nelson P, Summers R, Watt A, Martıinez Pillet V, Bonet JA, Schmidt W, Berfkefeld T, Title AM, Domingo V, Gasent Blesa JL, del Toro Iniesta JC, López Jiménez A, Álvarez Herrero A, Sabau-Graziati L, Widani C, Haberler P, Härtel K, Kampf D, Levin T, P’erez Grande I, Sanz-Andrés A, Schmidt E (2011) The sunrise mission. Solar Phys 268:1–34Google Scholar
  11. Beech M (1998) Venus-intercepting meteoroid streams. Mon Not R Astron Soc 294:259–264CrossRefGoogle Scholar
  12. Blamont J (1985) The exploration of the atmosphere of Venus by balloons. Adv Space Res 5(9):99–106CrossRefGoogle Scholar
  13. Bowman DC (2016) Infrasound from ground to space. PhD thesis, The University of North Carolina at Chapel HillGoogle Scholar
  14. Bowman DC, Lees JM (2015a) Infrasound in the middle stratosphere measured with a free flying acoustic array. Geophys Res Lett 42(22):10010–10017CrossRefGoogle Scholar
  15. Bowman DC, Lees JM (2015b) Near real time weather and ocean model data access with rNOMADS. Comput Geosci 78:88–95CrossRefGoogle Scholar
  16. Bowman DC, Lees JM (2016) Direct measurement of the acoustic wave field in the stratosphere. In: Proceedings of the 2016 IEEE aerospace conferenceGoogle Scholar
  17. Bowman DC, Norman PE, Yang X (2015) Solar balloons: a low cost, multi-hour flight system for the lower stratosphereGoogle Scholar
  18. Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803CrossRefGoogle Scholar
  19. Bretherton FP (1969) Lamb waves in a nearly isothermal atmosphere. Q J R Meteorol Soc 95:754–757CrossRefGoogle Scholar
  20. Brown P, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP (2002a) The flux of small near-Earth objects colliding with the Earth. Nature 420:294–296CrossRefGoogle Scholar
  21. Brown PG, Whitaker RW, ReVelle DO, Tagliaferri E (2002b) Multi-station infrasonic observations of two large bolides: signal interpretation and implications for monitoring of atmospheric explosions. Geophys Res Lett 29(13):1636CrossRefGoogle Scholar
  22. Cahyadi, M. N. and Heki, K. (2015). Coseismic ionospheric disturbance of the large strike-slip earthquakes in North Sumatra in 2012: \(m_{w}\) dependence of the disturbance amplitudes. Geophys J Int 200:116–129Google Scholar
  23. Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. In Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer Science and Business Media, pp 185–234Google Scholar
  24. Ceranna L, Matoza R, Hupe P, Le Pichon A, Landés M (2019) Systematic array processing of a decade of global IMS infrasound data. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 471–482Google Scholar
  25. Christie DR, Campus P (2010) The IMS infrasound network: Design and establishment of infrasound stations. In Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, Springer Science and Business Media, pp 29–75Google Scholar
  26. Chum J, Hruska F, Zednik J, Lastovicka J (2012) Ionospheric disturbances (infrasound waves) over the Czech Republic excited by the 2011 Tohoku earthquake. J Geophys Res 117:A08319Google Scholar
  27. Coffman JW (1965) A balloon-borne microphone system. In: Korn AO (ed) Proceedings of the 1964 Air Force Cambridge research laboratories scientific balloon symposium, L. G. Hanscom Field, Bedford, MassachusettsGoogle Scholar
  28. Davies K, Jones JE (1973) Acoustic waves in the ionospheric F2 region produced by severe thunderstorms. J Atmos Terr Phys 35:1744–1787CrossRefGoogle Scholar
  29. Dawton DI, Elliot H (1953) Day and night measurements of the total cosmic ray intensity at balloon altitudes. J Atmos Terr Phys 3:217–222CrossRefGoogle Scholar
  30. de Groot-Hedlin C, Hedlin MA (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203:960–971Google Scholar
  31. de Jong M (2015) Venus altitude cycling balloon. In: Venus lab and technology workshopGoogle Scholar
  32. Doerenbecher A, Basdevant C, Drobinski P, Durand P, Fesquet C, Bernard F, Cocquerez P, Verdier N, Vargas A (2016) Low atmosphere drifting balloons: platforms for environmental monitoring and forecast improvement. Bull Am Meteorol SocGoogle Scholar
  33. Drobzheva YV, Krasnov VM (2003) The acoustic field in the atmosphere and ionosphere caused by a point explosion on the ground. J Atmos Solar-Terr Phys 65:369–377CrossRefGoogle Scholar
  34. Edwards WN, Brown PG, ReVelle DO (2006) Estimates of meteoroid kinetic energies from observations of infrasonic airwaves. J Atmos Solar-Terr Phys 68:1136–1160CrossRefGoogle Scholar
  35. Farges T, Blanc E (2010) Characteristics of infrasound from lightning and sprites near thunderstorm areas. J Geophys Res Space Phys 115:A00E31CrossRefGoogle Scholar
  36. Fee D, Haney M, Matoza R, Szuberla C, Lyons J, Waythomas C (2016) Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska. Bulletin of the Seismol Soc Am 106(3):1024–1035CrossRefGoogle Scholar
  37. Fee D, Matoza RS (2013) An overview of volcano infrasound: from hawaiian to plinian, local to global. J Volcanol Geoth Res 249:123–139CrossRefGoogle Scholar
  38. Frankel C (1996) Volcanoes of the solar system. Cambridge University PressGoogle Scholar
  39. Fukuhara T, Futaguchi M, Hashimoto GL, Horinouchi T, Imamura T, Iwagaimi N, Koyama T, Murakami S, Nakamura M, Ogohara K, Sato M, Suzuki M, Taguchi M, Takagi S, Ueno M, Watanabe S, Yamada M, Yamazaki A (2017) Large stationary gravity wave in the atmosphere of Venus. Nat GeosciGoogle Scholar
  40. Garcia RF, Mimoun D, Brissaud Q, Poler G, Lebonnois S (2016). Infrasound from Venus quakes: numerical modeling and balloon observation project. In: International Venus conferenceGoogle Scholar
  41. Green DN, Bowers D (2010) Estimating the detection capability of the international monitoring system infrasound network. J Geophys Res 115:D18116CrossRefGoogle Scholar
  42. Guzik TG, Besse S, Calongne A, Dominique A, Ellison SB, Gould R, Granger D, Olano D, Smith D, Stewart M, Wefel JP (2008) Development of the High Altitude Student Platform. Adv Sp Res 42:1704–1714CrossRefGoogle Scholar
  43. Haack A, Gerding M, Lübken F-J (2014) Characteristics of stratospheric turbulent layers measured by LITOS and their relation to the Richardson number. J Geophys Res Atmos 119:10605–10618CrossRefGoogle Scholar
  44. Herrin ET, Kim TS, Stump B (2006) Evidence for an infrasound waveguide. Geophys Res Lett 33:L07815CrossRefGoogle Scholar
  45. Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res Sp Phys 106(A10):21543–21548CrossRefGoogle Scholar
  46. Jet propulsion laboratory (2016) Fireball and bolide reportsGoogle Scholar
  47. Jones JS (1995) Reversible fluid balloon altitude control concepts. In: Proceedings of the 11th lighter-than-air systems technology conferenceGoogle Scholar
  48. Krasnov VM, Drobzheva YV, Chum J (2015) Far-field coseismic ionospheric disturbances of Tohoku earthquake. J Atmos Solar-Terr Phys 135:12–21CrossRefGoogle Scholar
  49. Krasnov VM, Drobzheva YV, Lastovicka J (2007) Acoustic energy transfer to the upper atmosphere from sinusoidal sources and a role of nonlinear processes. J Atmos Solar-Terr Phys 69:1357–1365CrossRefGoogle Scholar
  50. Lally VE (1967) Superpressure balloons for horizontal soundings of the atmosphere. Technical report, National Center for Atmospheric ResearchGoogle Scholar
  51. Lally VE (1991) Manned orbital balloon flight—available techniques. In:International balloon technology conferenceGoogle Scholar
  52. Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res 117:D06102CrossRefGoogle Scholar
  53. Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40:3732–3737CrossRefGoogle Scholar
  54. Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121CrossRefGoogle Scholar
  55. Le Pichon A, Herry P, Mialle P, Vergoz J, Brachet N, Garcés M, Drob D, Ceranna L (2005) Infrasound associated with the 2004–2005 large Sumatra earthquake and tsunami. Geophys Res Lett 32:L19802CrossRefGoogle Scholar
  56. Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge, EnglandGoogle Scholar
  57. Lognonné P, Banerdt WB, Hurst K, Mimoun D, Garcia R, Lefeuvre M, Gagnepain-Beyneix J, Wieczorek M, Mocquet A, Panning M, Beucler E, Deraucourt S, Giardini D, Boschi L, Christensen U, Goetz W, Pike T, Johnson C, Weber R, Larmat K, Kobayashi N, Tromp J (2012). InSight and single-station broadband seismology: From signal and noise to interior structure determination. In: 43rd lunar and planetary conferenceGoogle Scholar
  58. Mabie J, Bullett T, Moore P, Vieira G (2016) Identification of rocket-induced acoustic waves in the ionosphere. Geophys Res LettGoogle Scholar
  59. Marcillo O, Johnson JB, Hart D (2012) Implementation, characterization, and evaluation of an inexpensive low-power low-noise infrasound sensor based on a micromachined differential pressure transducer and a mechanical filter. J Atmos Ocean Technol 29:1275–1284CrossRefGoogle Scholar
  60. Marcq E, Bertaux J-L, Montmessin F, Belyaev D (2013) Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat Geosci 6:25–28CrossRefGoogle Scholar
  61. Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  62. Matoza RS, Green DN, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res Sol Earth 122:2946–2971Google Scholar
  63. Matoza RS, Landés M, Le Pichon A, Ceranna L, Brown D (2013) Coherent ambient infrasound recorded by the International Monitoring System. Geophys Res Lett 40:429–433CrossRefGoogle Scholar
  64. Meecham WC, and Wescott, J. W. (1965). High-altitude noise background. In: Proceedings of the 5th international congress on acousticsGoogle Scholar
  65. Mentik JH, Evers LG (2011) Frequency response and design parameters for differential microbarometers. J Acoust Soc Am 130(1):33–41CrossRefGoogle Scholar
  66. Morris AL (ed) (1975) Scientific ballooning handbook. National Center for Atmospheric Research. NCAR-TN/1A-99Google Scholar
  67. Mutschlecner JP, Whitaker RW (1997) The design and operation of infrasonic microphones. Technical report, Los Alamos National LaboratoriesCrossRefGoogle Scholar
  68. Naka Y, Shindo S, Makino Y, Kawakami H (2013) Systems and methods for aerial and ground-based sonic boom measurement. Technical report, Japan Aerospace Exploration AgencyGoogle Scholar
  69. Negraru PT, Golden P, Herrin ET (2010) Infrasound propagation in the “Zone of Silence”. Seismo Res Lett 81(4):615–625CrossRefGoogle Scholar
  70. Negraru PT, Herrin ET (2009) On infrasound waveguides and dispersion. Seismo Res Lett 80(4):565–571CrossRefGoogle Scholar
  71. NOAA (1976) U.S. standard atmosphere 1976. Technical report, National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, and the United States Air ForceGoogle Scholar
  72. Officer CB (1958) Introduction to the theory of sound transmission. McGraw Hill Book CompanyGoogle Scholar
  73. Peebles C (1997) High frontier: The U. government printing office, S. Air Force and the Military Space Program. The U. S. Government Printing Office, U. SGoogle Scholar
  74. Pilger C, Bittner M (2009) Infrasound from tropospheric sources: impact on mesopause temperature? J Atmos Solar-Terr Phys 71:816–822CrossRefGoogle Scholar
  75. Quinn EP, Holzworth RH (1987) Quasi-lagrangian measurements of density surface fluctuations and power spectra in the stratosphere. J Geophys Res 92(D9):10926–10932CrossRefGoogle Scholar
  76. Raspet R, Abbott J-P, Webster J, Yu J, Talmadge C, Alberts II K, Collier S, Noble J (2019) New systems for wind noise reduction for infrasonic measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 91–124Google Scholar
  77. Rayleigh (1894) The theory of sound, vol 2. Macmillan and CoGoogle Scholar
  78. Rind D (1977) Heating of the lower thermosphere by the dissipation of acoustic waves. J Atmos Terr Phys 39:445–456CrossRefGoogle Scholar
  79. Rind D (1978) Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40:1199–1209CrossRefGoogle Scholar
  80. Russell CT, Zhang TL, Delva M, Magnes W, Strangeway RJ, Wei HY (2007) Lightning on Venus inferred from whistler-mode waves in the ionosphere. Nature 450:661–662CrossRefGoogle Scholar
  81. Sagdeev RS, Linkin VM, Blamont JT, Preston RA (1986) The VEGA Venus balloon experiment. Science 231(4744):1407–1408CrossRefGoogle Scholar
  82. Saito, Y. (2014). Quest for altitude. Accessed 2 Dec 2016Google Scholar
  83. Shalygin EV, Markiewicz WJ, Basilevsky AT, Titov DV, Ignatiev NI, Head JW (2015) Active volcanism on Venus in the Ganiki Chasma rift zone. Geophys Res Lett 42:4762–4769CrossRefGoogle Scholar
  84. Smrekar SE, Stofan ER, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P (2010) Recent hot-spot volcanism on Venus from VIRTIS emissivity data. Science 328:605–608CrossRefGoogle Scholar
  85. Squyres S (2011) Vision and voyages for planetary science in the decade 2013–2022Google Scholar
  86. Stevenson D, Cutts J, Mimoun D (2015) Probing the interior structure of Venus. Technical report, Keck Institute for Space StudiesGoogle Scholar
  87. Tailpied D, Le Pichon A, Marchetti E, Assink J, Vergniolle S (2016) Assessing and optimizing the performance of infrasound networks to monitor volcanic eruptions. Geophys J IntGoogle Scholar
  88. Veggeberg K (2012) Development of a sonic boom measurement system at JAXA. In: Proceedings of the acoustics 2012 Nantes conferenceGoogle Scholar
  89. Volcano World (2017) Volcano world: Venus. Accessed 4 Jan 2017Google Scholar
  90. Walker KT, Hedlin MA (2010) A review of wind-noise reduction technologies. In: Infrasound monitoring for atmospheric studies, chapter 5, pp 141–182. Springer Science and Business MediaGoogle Scholar
  91. Walterscheid RL, Hickey MP (2005) Acoustic waves generated by gusty flow over hilly terrain. J Geophys Res Sp Phys 110:A10307CrossRefGoogle Scholar
  92. Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119(5):2651–2664CrossRefGoogle Scholar
  93. Weaver RL, McAndrew J (1995) The Roswell report: fact versus fiction in the New Mexico desert. Government Printing Office, U.SCrossRefGoogle Scholar
  94. Wescott JW (1961) Atmospheric background at high altitudes. In: Proceedings of the symposium on atmospheric acoustic propagationGoogle Scholar
  95. Wescott JW (1964a) Acoustic detection of high-altitude turbulence. Technical report, The University of MichiganGoogle Scholar
  96. Wescott JW (1964b) Acoustic detection of high altitude turbulence. In: Korn AO (ed) Proceedings of the 1964 Air Force Cambridge Research Laboratories scientific ballooning symposium, L. G. Hanscom Field, Bedford, MassachusettsGoogle Scholar
  97. Wu Y, Llewellyn Smith SG, Rottman JW, Broutman D, Minister J-BH (2016) The propagation of tsunami-generated acoustic-gravity waves in the atmosphere. J Atmos Sci 73:3025–3036CrossRefGoogle Scholar
  98. Yajima N, Izutsu N, Imamura T, Abe T (2009) Scientific Ballooning: Technology and applications of exploration balloons floating in the stratosphere and the atmospheres of other planets. Springer Science and Business MediaGoogle Scholar
  99. Young EF, Brown P, Boslough M, Ballard C, Dougherty E, Dullea C, Garner K, Heaney M, Thom I., Von Hendy, M., Wahl, K., and Young, E. (2016). Detection of infrasound disturbances from the Earth’s stratosphere. In: Proceedings of the 2016 IEEE aerospace conferenceGoogle Scholar
  100. Zhang SD, Yi F, Huang CM, Huang KM (2012) High vertical resolution analyses of gravity waves and turbulence at a midlatitude station. J Geophys Res Atmos 117:D02103Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel Bowman
    • 1
    Email author
  • Jonathan Lees
    • 2
  • James Cutts
    • 3
  • Attila Komjathy
    • 3
  • Eliot Young
    • 4
  • Kayla Seiffert
    • 5
  • Mark Boslough
    • 1
  • Stephen Arrowsmith
    • 1
  1. 1.Sandia National LaboratoriesAlbuquerqueUSA
  2. 2.Department of Geological SciencesUniversity of North CarolinaChapel HillUSA
  3. 3.Jet Propulsion Laboratory, California Institute of TechnologyPasadenaUSA
  4. 4.Southwest Research InstituteSan AntonioUSA
  5. 5.Department of Geological SciencesUniversity of North CarolinaChapel HillUSA

Personalised recommendations