Advertisement

Infrasound Monitoring of Volcano-Related Hazards for Civil Protection

  • Maurizio RipepeEmail author
  • Emanuele Marchetti
Chapter

Abstract

In the last 20 years, infrasound has increased significantly the potentials of volcano monitoring, with direct impact on risk evaluation for civil protection. Automatic systems based on infrasound are nowadays used operationally, and future improvements will reinforce this technique especially when integrated with other ground-based or satellite observations. We show how by using dedicated array processing, infrasound can be used to detect and notify, automatically and in real time, the onset of explosive eruptions and the run-out of density currents based on the apparent velocity, propagation back-azimuth, and frequency change. Such procedures have been tested and tuned for several years and are currently being applied to early warning of explosive eruption at Etna volcano and to avalanche analysis and risk forecasting in several sites in Europe.

Notes

Acknowledgements

The research leading to these results was performed within the ARISE2 project (www.arise-project.eu) and received funding from the H2020 program under grant agreement 653980.

References

  1. Alparone A, Andronico D, Sgroi T, Ferrari F, Lodato L, Reitano D (2007) Alert system to mitigate tephra fallout hazards at Mt. Etna Volcano, Italy. Nat Hazards 43:333–350.  https://doi.org/10.1007/s11069-007-9120-7CrossRefGoogle Scholar
  2. Baines PG, Sacks S (2013) Atmospheric internal waves generated by explosive volcanic eruptions In: Wadge G, Voight B (eds) The Eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010, vol 39. Geological Society, LondonGoogle Scholar
  3. Baxter PJ, Horwell KJ (2015) Impacts of eruptions on human health In: The encyclopedia of volcanoes, 2nd edn, pp 1035–1047.  https://doi.org/10.1016/b978-0-12-385938-9.00060-2CrossRefGoogle Scholar
  4. Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modeling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forcast and civil aviation. Bull Volcanol 74(1):1–10.  https://doi.org/10.1007/s00445-011-0508-6CrossRefGoogle Scholar
  5. Braun T, Ripepe M (1993) Interaction of seismic and air waves recorded at Stromboli volcano. Geophys Res Lett 20.  https://doi.org/10.1029/92gl02543CrossRefGoogle Scholar
  6. Buckingham M, Garcés M (1996) Canonical model of volcano acoustics. J Geophys Res 101:B4.  https://doi.org/10.1029/95JB01680CrossRefGoogle Scholar
  7. Bursik M (2001) Effects of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624CrossRefGoogle Scholar
  8. Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. In: Le Pichon A , Balc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 185–234Google Scholar
  9. Caplan-Auerbach J, Bellesiles A, Fernandez JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine volcano, Alaska. J Volcanol Geoth Res 189:12–18.  https://doi.org/10.1016/j.jvolgeores.2009.10.002CrossRefGoogle Scholar
  10. Carazzo G, Kaminski E, Tait S (2006) The route to self-similarity in turbulent jets and plumes. J Fluid Mech 547:137–148CrossRefGoogle Scholar
  11. Carazzo G, Kaminski E, Tait S (2008) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra terrestrial explosive volcanism. J Geophys Res 113:B09201.  https://doi.org/10.1029/2007JB005458CrossRefGoogle Scholar
  12. Carey S, Sigurdsson H, Mandeville C, Bronto S (1996) Pyroclastic flows and surges over water: an example from the 1883 Krakatau eruption. Bull Volcanol 57:493.  https://doi.org/10.1007/bf00304435CrossRefGoogle Scholar
  13. Cioni R, Pistolesi M, Rosi M (2015) Plinian and Subplinian eruptions. In: The encyclopedia of volcanoes, 2nd edn, pp 519–536.  https://doi.org/10.1016/b978-0-12-385938-9.00029-8CrossRefGoogle Scholar
  14. Clarke A, Esposti Ongaro T, Belousov A (2015) Vulcanian eruptions. In: The encyclopedia of volcanoes, 2nd edn, pp 505–518.  https://doi.org/10.1016/b978-0-12-385938-9.00028-6CrossRefGoogle Scholar
  15. Cole PD, Neri A, Baxter PJ (2015) Hazards from pyroclastic density currents. In: The encyclopedia of volcanoes, 2nd edn, pp 943–956.  https://doi.org/10.1016/b978-0-12-385938-9.00054-7CrossRefGoogle Scholar
  16. Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310:369–379CrossRefGoogle Scholar
  17. De Angelis S, Fee D, Haney M, Schneider D (2012) Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-coupled airwaves. Geophys Res Lett 39:L21312.  https://doi.org/10.1029/2012GL053635CrossRefGoogle Scholar
  18. Delle Donne D, Ripepe M (2012) High-frame rate thermal imagery of Strombolian explosions: implications for explosive and infrasonic source dynamics. J Geophys Res 117:B09206.  https://doi.org/10.1029/2011JB008987CrossRefGoogle Scholar
  19. Delle Donne D, Ripepe M, De Angelis S, Cole PD, Lacanna G, Poggi P, Stewart R (2015) Thermal, acoustic and seismic signals from pyroclastic density currents and Vulcanian explosions at Soufrière Hills Volcano, Montserrat. In: Wadge G, Robertson REA, Voight B (eds) The eruption of Soufrière Hills Volcano, Montserrat from 2000 to 2010, vol 39. Geological Society of London, London, Memoirs, 2014, pp 169–178Google Scholar
  20. Dibble RR, Kienle J, Kyle PR, Shibuya K (1984) Geophysical studies of Erebus volcano, Antarctica, from 1974 December to 1982 January. NZ J Geol Geophys 27(4):425–455CrossRefGoogle Scholar
  21. Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213:539–541.  https://doi.org/10.1126/science.213.4507.539CrossRefGoogle Scholar
  22. Fee D, Garcés M, Steffke A (2010) Infrasound from Tungurahua Volcano 2006–2008: Strombolian to Plinian eruptive activity. J Volcanol Geoth Res 193:67–81.  https://doi.org/10.1016/j.jvolgeores.2010.03.006CrossRefGoogle Scholar
  23. Fee D, Matoza RS (2013) An overview of volcano infrasound: from hawaiian to plinian, local to global. J Volcanol Geotherm Res 249:123–139.  https://doi.org/10.1016/j.jvolgeores.2012.09.002CrossRefGoogle Scholar
  24. Firstov PP, Storcheus AV (1987) Acoustic signals that accompanied the March–June 1983 eruption at Klyuchevskoy Volcano. Volcanol Seismol 5:66–80Google Scholar
  25. Garces M, Fee D, Steffke A, McCormack DP, Servranckx R, Bass H, Hetzer C, Hedlin M-, Matoza RS, Yepez H, Ramon P (2008) Capturing the acoustic fingerprint of stratospheric ash injection. EOS Trans Am Geophys Union 89(40):377–378CrossRefGoogle Scholar
  26. Gorshkov GS (1959) Gigantic eruption of the Volcano Bezymianny. Bull. Volcan 20:77–109CrossRefGoogle Scholar
  27. Hooper DM, Mattioli GS (2001) Kinematic modeling of pyroclastic flows produced by gravitational dome collapse at Soufriere Hills Volcano, Montserrat. Nat Hazards 23:65.  https://doi.org/10.1023/A:1008130605558CrossRefGoogle Scholar
  28. Iguchi M, Ishihara K (1990) Comparison of earthquakes and airshocks accompanied with explosive eruptions at Sakurajima and Sawunosejima volcanoes. Ann Disaster Prev Res Inst Kyoto Univ 33(B-1):1–12Google Scholar
  29. Johnson JB, Aster R, Jone R, Kyle P, McIntosh B (2011) Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake. J Volcanol Geoth Res 177.  https://doi.org/10.1016/j.jvolgeores.2008.06.028CrossRefGoogle Scholar
  30. Johnson J (2019) Local volcano infrasound monitoring. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 989–1022Google Scholar
  31. Johnson JB, Ripepe M (2011) Volcano Infrasound: a review. J Volcanol Geoth Res 206:61–69.  https://doi.org/10.1016/j.jvolgeore.2011.06.006CrossRefGoogle Scholar
  32. Jolly AD, Thompson G, Norton GE (2002) Locating pyroclastic flows on Soufrière Hills volcano, Montserrat, West Indies, using amplitude signals from high dynamic range instruments. J Volcan Geoth Res 118:299–317CrossRefGoogle Scholar
  33. Kanamori H, Given JW (1982) Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens—a terrestrial monopole? J Geophys Res 87:5422–5432.  https://doi.org/10.1029/JB087iB07p05422CrossRefGoogle Scholar
  34. Kanamori H, Mori J, Harkrider DG (1994) Excitation of atmospheric oscillations by volcanic eruptions. J Geophys Res 99:21947–21961.  https://doi.org/10.1029/94JB01475CrossRefGoogle Scholar
  35. Kim K, Lees JM, Ruiz M (2012) Acoustic multipole source model for volcanic explosions and inversion for source parameters. Geophys J Int 191:1192–1204.  https://doi.org/10.1111/j.1365-246X.2012.05696.xCrossRefGoogle Scholar
  36. Kogelnig A, Hubl J, Surinach E, Vilajosana I, McArdell BW (2014) Infrasound produced by debris flows: propagation and frequency content evolution. Nat Hazard 70:1713–1733.  https://doi.org/10.1007/s11069-011-9741-8CrossRefGoogle Scholar
  37. Lacanna G, Ichihara M, Iwakuni M, Takeo M, Iguchi M, Ripepe M (2014) Influence of atmospheric structure and topography on infrasonic wave propagation. J Geophys Res. Solid Earth 119:2988–3005.  https://doi.org/10.1002/2013JB010827CrossRefGoogle Scholar
  38. Lacanna G, Ripepe M (2012) Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling. J Volcanol Geoth Res 250:9–18.  https://doi.org/10.1016/j.jvolgeores.2012.10.005CrossRefGoogle Scholar
  39. Lamb OD, De Angelis S, Lavallem Y (2015) Using infrasound to constrain ash plume rise. J Appl Volcanol 4:20.  https://doi.org/10.1186/s13617-015-0038-6CrossRefGoogle Scholar
  40. Lighthill J (1978) Waves in fluids. Cambridge University Press, Cambridge, London, New York, MelbourneGoogle Scholar
  41. Marchetti E, Ripepe M, Delle Donne D, Genco R, Finizola A, Garaebiti E (2013) Blast waves from violent explosive activity at Yasur volcano. Vanuatu Geophys Res Lett 40(1–6):5838–5843.  https://doi.org/10.1002/2013GL057900CrossRefGoogle Scholar
  42. Marchetti E, Ripepe M, Ulivieri G, Caffo S, Privitera E (2009) Infrasonic evidences for branched conduit dynamics at Mt. Etna volcano, Italy. Geoph Res Lett 36:L19308.  https://doi.org/10.1029/2009gl040070
  43. Marchetti E, Ripepe M, Ulivieri G, Kogelnig A (2015). Infrasound array criteria for automatic detection and front velocity estimation of snow avalanches: towards a real-time early-warning system. Nat Hazards Earth Syst Sci 15: 2545–2555. ISSN: 1561-8633.  https://doi.org/10.5194/nhess-15-2545-2015CrossRefGoogle Scholar
  44. Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162Google Scholar
  45. Marzano FS, Picciotti E, Montopoli M, Vulpiani G (2013) Inside volcanic clouds: remote sensing of ash plumes using microwave weather radars. Bull Am Meteorol Soc 94(10)CrossRefGoogle Scholar
  46. Mastin LG et al (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geoth Res.  https://doi.org/10.1016/j.jvolgeores.2009.01.008CrossRefGoogle Scholar
  47. Matoza RS, Fee D, Garcés MA, Seiner JM, Ramón PA, Hedlin MAH (2009) Infrasonic jet noise from volcanic eruptions. Geophys Res Lett 36. ISSN: 0094–8276.  https://doi.org/10.1029/2008gl036486
  48. Matoza RS, Fee D, Neilsen TB, Gee KL, Ogden DE (2013) Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence. J Geophys Res Solid Earth 118:6269–6284.  https://doi.org/10.1002/2013JB010303CrossRefGoogle Scholar
  49. Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077 Google Scholar
  50. Matoza RS, Le Pichon A, Vergoz J, Herry P, Lalande JM, Lee H, Che IY, Rybin A (2011a) Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of remote explosive volcanism. J Volcanol Geotherm Res.  https://doi.org/10.1016/j.jvolgeores.2010.11.022CrossRefGoogle Scholar
  51. Matoza RS, Vergoz J et al (2011b) Long-range acoustic observations of the Eyjafjallajokull eruption, Iceland, April-May 2010. Geophys Res Lett 38:L06308.  https://doi.org/10.1029/2011GL047019CrossRefGoogle Scholar
  52. Mauk FJ (1983) Utilization of seismically recorded infrasonic and acoustic signals to monitor volcanic explosions: the El Chichon Sequence 1982—a case study. J Geophys Res 88:10385–10401.  https://doi.org/10.1029/JB088iB12p10385CrossRefGoogle Scholar
  53. McNutt SR (1994) Volcanic tremor amplitude correlated with eruption explosivity and its potential use in determining ash hazard to aviation. In: Proceedings of the 1st international symposium on volcanic ash and aviation safety, vol 2047. US Geological Survey Bulletin, pp 377–385Google Scholar
  54. McCormack D, Bass H, Garcés MA, Hedlin M, Yepez H (2006) Acoustic Sourveillance for Hazardous Eruptions (ASHE): a proof-of-concept experiment for operational near-real-time infrasonic remote sensing. Cities of volcanoes, Quito, January, p 2006Google Scholar
  55. Medici EF, Allen JS, Waite GP (2014) Modeling shock waves generated by explosive volcanic eruptions. Geophys Res Lett 41:414–421.  https://doi.org/10.1002/2013GL058340CrossRefGoogle Scholar
  56. Mikumo T, Bolt BA (1985) Excitation mechanism of atmospheric pressure waves from the 1980 Mount St Helens eruption. Geophys J Int 81:445–461CrossRefGoogle Scholar
  57. Montopoli M, Vulpiani G, Cimini D, Picciotti E, Marzano FS (2014) Interpretation of observed microwave signatures from ground dual polarization radar and space multi frequency radiometer for the 2011 Grímsvötn volcanic eruption. Atmos Meas Tech 7:537–552CrossRefGoogle Scholar
  58. Nairn IA (1976) Atmospheric shock waves and condensation clouds from Ngauruhoe explosive eruptions. Nature 259:190–192.  https://doi.org/10.1038/259190a0CrossRefGoogle Scholar
  59. Nishimura T, McNutt SR (2008) volcanic tremor during eruptions: temporal characteristics, scaling and estimates of vent radius. J Volcanol Geotherm 178:10–18Google Scholar
  60. Okada H, Nishimura Y, Miyamachi H, Mori H, Ishihara K (1990) Geophysical significance of the 1988–1989 explosive eruptions of Mt. Tokachi, Hokkaido, Japan. Bull Volcanol Soc Jpn Ser 2 35(2):175–203Google Scholar
  61. O’Regan M (2011) On the edge of chaos: European aviation and disrupted mobilities. Mobilities 6(1):21–30CrossRefGoogle Scholar
  62. Pallister J, McNutt S (2015) synthesis of volcano monitoring. In: The encyclopedia of volcanoes, 2nd edn, pp 1151–1171.  https://doi.org/10.1016/b978-0-12-385938-9.00066-3CrossRefGoogle Scholar
  63. Prejean SG, Brodsky EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res 116:B01306.  https://doi.org/10.1029/2010JB007620CrossRefGoogle Scholar
  64. Reed JW.(1987) Air pressure waves from Mount St. Helens eruptions. J Geophys Res 92(D10):11979–11992CrossRefGoogle Scholar
  65. Richards AF (1963) Volcanic sounds: investigation and analysis. J Geophys Res 68(3):919–928CrossRefGoogle Scholar
  66. Ripepe M, Barfucci G, De Angelis S, Delle Donne D, Lacanna G, Marchetti E (2016) Modeling volcanic eruption parameters by near-source internal gravity waves, Scientific reports, SREP-16–15817BGoogle Scholar
  67. Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-Plume Dynamics and Eruption Source Parameters by infrasound and thermal Imagery: the 2010 Eyjafjallajökull Eruption. Earth Planet Sci Lett 366:112–121.  https://doi.org/10.1017/j.epsl.2013.02.005CrossRefGoogle Scholar
  68. Ripepe M, Ciliberto S, Della Schiava M (2001) Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J Geophys Res 106(B5):8713–8727.  https://doi.org/10.1029/2000JB900374CrossRefGoogle Scholar
  69. Ripepe M, De Angelis S, Lacanna G, Poggi P, Williams C, Marchetti E, Delle Donne D, Ulivieri G (2009) Tracking pyroclastic flows at Soufriere Hills Volcano. Eos Trans Am Geophys Union 90(27):229–230.  https://doi.org/10.1029/2009eo270001CrossRefGoogle Scholar
  70. Ripepe M, De Angelis S, Lacanna G, Voight B (2010) Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat. Geophys Res Lett 37(L00E14):1–5CrossRefGoogle Scholar
  71. Ripepe M, Marchetti E (2002) Array tracking of infrasonic sources at Stromboli volcano. Geophys Res Lett 29(22):2076.  https://doi.org/10.1029/2002GL015452CrossRefGoogle Scholar
  72. Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc A 364:2073–2097.  https://doi.org/10.1098/rsta.2006.1814CrossRefGoogle Scholar
  73. Simkin T, Fiske RS (1983) Krakatau 1883—The volcanic eruption and its effects. Smithsonian Institute Press, Washington D.C., p 464Google Scholar
  74. Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods A (1997) Volcanic plumes. Wiley, Chirchester, UK, 574 pGoogle Scholar
  75. Sparks RSJ, Young RS (2002) The eruption of Soufrière Hills Volcano, Montserrat (1995–1999): overview of scientific results. Geolog Soc Lond Momoires 21:45–69.  https://doi.org/10.1144/gslmem.2002.02.1.01.03
  76. Tahira M, Nomura M, Sawada Y, Kamo K (1996), Infrasonic and acoustic-gravity waves generated by the Mount Pinatubo eruption of June 15, 1991, In Newhall CG, Punongbayan RS (eds) Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, University of Washington Press, Seattle, pp 601–614Google Scholar
  77. Ulivieri G, Marchetti E, Ripepe M, Chiambretti I, De Rosa G, Segor V (2011) Monitoring snow avalanches in Northwestern Italian Alps using an infrasound array. Cold Reg Sci Technol 69:177–183. ISSN: 0165-232X.  https://doi.org/10.1016/j.coldregions.2011.09.006CrossRefGoogle Scholar
  78. Ulivieri G, Ripepe M, Marchetti E (2013) Infrasound reveals transition to oscillatory discharge regime during lava fountaining: Implication for early warning. Geophys Res Let 40:3008–3013. ISSN: 0094-8276.  https://doi.org/10.1002/grl.50592CrossRefGoogle Scholar
  79. Vergniolle S, Brandeis G (1994) Origin of the sound generated by Strombolian explosions. Geophys Res Lett 21(18).  https://doi.org/10.1029/94gl01286CrossRefGoogle Scholar
  80. Vergniolle S, Caplan-Auerbach J (2006) Basaltic thermals and Subplinian plumes: Constraints from acoustic measurements at Shishaldin volcano, Alaska. Bull Volcanol 68(7–8):611–630.  https://doi.org/10.1007/s00445-005-0035-4CrossRefGoogle Scholar
  81. Vulpiani G, Ripepe M, Valade S (2016) Mass discharge rate retrieval combining weather radar and thermal camera observations (2016). J Geophys Res 121(8):5679–5695.  https://doi.org/10.1002/2016JB013191CrossRefGoogle Scholar
  82. Wadge G, Jackson P, Bower SM, Woods AW, Calder E (1998) Computer simulations of pyroclastic flows from dome collapse. Geophys Res Lett 25:3677–3680CrossRefGoogle Scholar
  83. Woulff G, McGetchin TR (1976) Acoustic noise from volcanoes: theory and experiments. Geophys J R Astron Soc 45:601–616CrossRefGoogle Scholar
  84. Yamasato H (1998) Quantitative analysis of pyroclastic flows using infrasonic and seismic data at Unzen volcano, Japan. J Phys Earth 45(6):397–416CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of FirenzeFlorenceItaly
  2. 2.Dipartimento Scienze Della TerraUniversita’ Di FirenzeFlorenceItaly

Personalised recommendations