Skip to main content

Volcano Infrasound and the International Monitoring System

  • Chapter
  • First Online:

Abstract

Volcanoes generate a wide variety of low-frequency (~0.01–20 Hz) acoustic signals, and infrasound technology is part of an expanding suite of geophysical tools available to characterize, understand, and monitor volcanic processes. We review recent advances in the field of volcano acoustics with an emphasis on scientific and potential civil application gains from the International Monitoring System (IMS) infrasound network. Energetic infrasound from explosive volcanism can propagate hundreds to thousands of kilometers in atmospheric waveguides and large explosive eruptions (which represent significant societal and economic hazards) are routinely recorded by the IMS infrasound network. Significant progress in understanding volcano infrasound has been made through dedicated local deployments (within <15 km of the source) in tandem with other observation systems. This research has identified diverse source mechanisms of volcanically generated infrasound, and elucidated the influence of near-source topography and local atmospheric conditions on acoustic propagation and recordings. Similarly, advances are being achieved in inferring volcanic source processes from signals recorded at the longer ranges typically associated with IMS detections. However, practical challenges remain in the optimization of remote volcano infrasound signal detection, discrimination, association, and location. Many of these challenges are the result of strong signal variability associated with long-range acoustic propagation through the temporally and spatially varying atmosphere. We review the state of knowledge on infrasound generation by explosive volcanism, and assess progress toward the development of infrasonic eruption early warning and notification systems at regional and global scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    VEI is a semi-quantitative measure of the magnitude or size of explosive eruptions based on factors such as the erupted ejecta volume, column height, and explosive eruption duration (Newhall and Self 1962). The VEI estimates given throughout the text are from the Smithsonian database of Siebert and Simkin (2002).

References

  • Annen C, Wagner JJ (2003) The impact of volcanic eruptions during the 1990s. Nat. Hazards Rev 4(4):169–175. https://doi.org/10.1061/(asce)1527-6988(2003)4:4(169

  • Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res 112:D23110. https://doi.org/10.1029/2007JD008462

    Article  Google Scholar 

  • Assink JD, Waxler R, Drob D (2012) On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides. J Geophys Res Atmospheres 117.D01110. https://doi.org/10.1029/2011JD016107

    Article  Google Scholar 

  • Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res 118:1–18. https://doi.org/10.1002/jgrd.50833

    Article  Google Scholar 

  • Assink JD, Le Pichon A, Blanc E, Kallel M, Khemiri L (2014) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res 119. https://doi.org/10.1002/2014jd021632

    Google Scholar 

  • Atchley AA (2005) Not your ordinary sound experience: a nonlinear-acoustics primer. Acoust Today 1(1):19–24

    Article  Google Scholar 

  • Banister JR (1984) Pressure wave generated by the Mount St. Helens eruption. J Geophys Res Atmospheres 89(D3):4895–4904

    Article  Google Scholar 

  • Båth M (1982) Atmospheric waves from Mount St. Helens. EOS Trans AGU 63(11):193–193

    Article  Google Scholar 

  • Blackstock DT (2000) Fundamentals of physical acoustics. Wiley-Interscience

    Google Scholar 

  • Bolt BA, Tanimoto T (1981) Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens EOS Trans AGU. 62(23):529–530

    Article  Google Scholar 

  • Bowman DC, Taddeucci J, Kim K, Anderson JF, Lees JM, Graettinger AH, Sonder I, Valentine GA (2014) The acoustic signatures of ground acceleration, gas expansion, and spall fallback in experimental volcanic explosions. Geophys Res Lett 41(6):1916–1922. https://doi.org/10.1002/2014GL05932

    Article  Google Scholar 

  • Braun T, Ripepe M (1993) Interaction of seismic and air waves as recorded at Stromboli volcano. Geophys Res Lett 20:65–68

    Article  Google Scholar 

  • Brogi F, Malaspinas O, Bonadonna C, Chopard B, Ripepe M (2015) Towards a numerical description of volcano aeroacoustic source processes using Lattice Boltzmann strategies. EOS Trans AGU Fall Meet Suppl Abstract S53D-04

    Google Scholar 

  • Buckingham MJ, Garcés MA (1996) Canonical model of volcano acoustics. J Geophys Res Solid Earth 101(B4):8129–8151

    Article  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the PMCC method. Geophys Res Lett 22(9):1021–1024

    Article  Google Scholar 

  • Cannata A, Montalto P, Privitera E, Russo G, Gresta S (2009) Tracking eruptive phenomena by infrasound: May 13, 2008 eruption at Mt. Etna. Geophys Res Lett 36:L05304. https://doi.org/10.1029/2008gl036738

  • Caplan-Auerbach J, Bellesiles A, Fernandes JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine Volcano, Alaska. J Volcanol Geoth Res 189(1):12–18

    Article  Google Scholar 

  • Casadevall TJ (ed) (1994) Volcanic ash and aviation safety: proceedings of the first international symposium on volcanic ash and aviation safety. US Geolo Sur Bull 2047

    Google Scholar 

  • Caudron C, Taisne B, Garces M, Le Pichon A, Mialle P (2015) On the use of remote infrasound and seismic stations to constrain the eruptive sequence and intensity for the 2014 Kelud eruption. Geophys Res Lett 42. https://doi.org/10.1002/2015gl064885

    Article  Google Scholar 

  • Cerminara M, Ongaro TE, Neri A (2016) Large Eddy Simulation of gas–particle kinematic decoupling and turbulent entrainment in volcanic plumes. J Volcanol Geotherm Res 326:143–171. https://doi.org/10.1016/j.jvolgeores.2016.06.018

    Article  Google Scholar 

  • Chester DK, Degg M, Duncan AM, Guest JE (2000) The increasing exposure of cities to the effects of volcanic eruptions: a global survey. Environ Hazards 2(3):89–103. https://doi.org/10.1016/S1464-2867(01)00004-3

    Article  Google Scholar 

  • Christie D, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Pichon AL, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. chap. 2. Springer, Netherlands, pp 29–75

    Google Scholar 

  • Cochran E, Shearer P (2006) Infrasound events detected with the Southern California seismic network. Geophys Res Lett 33(19)

    Google Scholar 

  • Chouet BA, Matoza RS (2013) A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J Volcanol Geotherm Res 252:108–175. https://doi.org/10.1016/j.jvolgeores.2012.11.013

    Article  Google Scholar 

  • Curle N (1955) The influence of solid boundaries upon aerodynamic sound. Proc R Soc London Ser A 231(1187):505–514

    Article  Google Scholar 

  • Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310:369–379. https://doi.org/10.1016/j.epsl.2011.08.027

    Article  Google Scholar 

  • Dabrowa AL, Green DN, Johnson JB, Phillips JC, Rust AC (2014) Comparing near-regional and local measurements of infrasound from Mount Erebus, Antarctica: implications for monitoring. J Volcanol Geotherm Res 288:46–61. https://doi.org/10.1016/j.volgeores.2014.10.001

    Article  Google Scholar 

  • Dalton MP, Waite GP, Watson IM, Nadeau PA (2010) Multiparameter quantification of gas release during weak Strombolian eruptions at Pacaya Volcano, Guatemala. Geophys Res Lett 37:L09303. https://doi.org/10.1029/2010gl042617

    Article  Google Scholar 

  • De Angelis S, Fee D, Haney M, Schneider D (2012) Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-coupled airwaves. Geophys Res Lett 39:L21312. https://doi.org/10.1029/2012GL053635

    Article  Google Scholar 

  • De Angelis S, Lamb O, Lamur A, Hornby A, Aulock F, Chigna G, Lavallée Y, Rietbrock A (2016) Characterization of moderate ash-and-gas explosions at Santiaguito volcano, Guatemala, from infrasound waveform inversion and thermal infrared measurements. Geophys Res Lett 43(12):6220–6227

    Article  Google Scholar 

  • Delclos C, Blanc E, Broche P, Glangeaud F, Lacoume JL (1990) Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens. J Geophys Res Atmos 95(D5):5485–5494

    Article  Google Scholar 

  • Delle Donne D, Ripepe M, De Angelis S, Cole PD, Lacanna G, Poggi P, Stewart R (2014) Chapter 9 Thermal, acoustic and seismic signals from pyroclastic density currents and Vulcanian explosions at Soufrière Hills Volcano, Montserrat. Geolo Soc Lon Mem 39(1):169–178

    Article  Google Scholar 

  • Delle Donne D, Ripepe M (2012) High-frame rate thermal imagery of Strombolian explosions: implications for explosive and infrasonic source dynamics. J Geophys Res Solid Earth (1978–2012):117(B9)

    Google Scholar 

  • Delle Donne D, Ripepe M, Lacanna G, Tamburello G, Bitetto M, Aiuppa A (2016) Gas mass derived by infrasound and UV cameras: implications for mass flow rate. J Volcanol Geoth Res 325:169–178

    Article  Google Scholar 

  • Dibble RR, Kienle J, Kyle PR, Shibuya K (1984) Geophysical studies of Erebus Volcano, Antarctica, from 1974 December to 1982 January. NZ J Geol Geophys 27(4):425–455

    Article  Google Scholar 

  • Donn WL, Rind D (1971) Natural Infrasound as an Atmospheric Probe. Geophys J R Astr Soc 26:111–133

    Article  Google Scholar 

  • Donn WL, Balachandran NK, Rind D (1975) Tidal wind control of long-range rocket infrasound. J Geophys Res 80(12):1662–1664

    Article  Google Scholar 

  • Donn WL, Balachandran NK (1981) Mount St. Helens eruption of 18 May 1980: air waves and explosive yield. Science 213(4507):539–541

    Article  Google Scholar 

  • Drob DP, Garces M, Hedlin M, Brachet N (2010a) The temporal morphology of infrasound propagation. Pure Appl Geophys 167:437–453. https://doi.org/10.1007/s00024-010-0080-6

    Article  Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garces MM (2010b) Inversion of infrasound signals for passive atmospheric remote sensing. In: infrasound Monitoring for Atmospheric Studies, pp 701–731. https://doi.org/10.1007/978-1-4020-9508-5_24

    Google Scholar 

  • Dzurisin D (2006) Volcano deformation: new geodetic monitoring techniques. Springer-Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Evers LG, Haak HW (2001) Listening to sounds from an exploding meteor and oceanic waves. Geophys Res Lett 28(1):41–44

    Article  Google Scholar 

  • Fairfield C (1980) OMSI sound project: the acoustic effects of the Mount St. Helens eruption on May 18 1980. Oregon Geol 42(12):200–202

    Google Scholar 

  • Fee D, Garces M (2007) Infrasonic tremor in the diffraction zone. Geophys Res Lett 34:L16826. https://doi.org/10.1029/2007GL030616

    Article  Google Scholar 

  • Fee D, Steffke A, Garces, M (2010a) Characterization of the 2008 Kasatochi and Okmok eruptions using remote infrasound arrays. J Geophys Res Atmos 115(D2). https://doi.org/10.1029/2009jd013621

  • Fee D, Garces M, Steffke A (2010a) Infrasound from Tungurahua Volcano 2006–2008: Strombolian to Plinian eruptive activity. J Volcanol Geotherm Res 193:67–81. https://doi.org/10.1016/j.jvolgeores.2010.03.006

    Article  Google Scholar 

  • Fee D, Garces M, Patrick M, Chouet B, Dawson P, Swanson D (2010b) Infrasonic harmonic tremor and degassing bursts from Halema’uma’u Crater, Kilauea Volcano, Hawaii. J Geophys Res 115:B11316. https://doi.org/10.1029/2010JB007642

    Article  Google Scholar 

  • Fee D, Matoza RS (2013) An overview of volcano infrasound: from hawaiian to plinian, local to global. J Volcanol Geotherm Res 249:123–139. https://doi.org/10.1016/j.jvolgeores.2012.09.002

    Article  Google Scholar 

  • Fee D, Matoza RS, Gee KL, Neilsen TB, Ogden DE (2013a) Infrasonic crackle and supersonic jet noise from the eruption of Nabro Volcano, Eritrea. Geophys Res Lett 40:1–5. https://doi.org/10.1002/grl.5082

    Article  Google Scholar 

  • Fee D, McNutt SR, Lopez TM, Arnoult KM, Szuberla CAL, Olson JV (2013b) Combining local and remote infrasound recordings from the 2009 Redoubt Volcano eruption. J Volcanol Geotherm Res 259:100–114

    Article  Google Scholar 

  • Fee D, Yokoo A, Johnson JB (2014) Introduction to an open community infrasound dataset from the actively erupting Sakurajima Volcano, Japan. Seismol Res Lett 85(6):1151–1162

    Article  Google Scholar 

  • Fee D, Haney M, Matoza R, Szuberla C, Lyons J, Waythomas C (2016), Seismic envelope-based detection and location of ground-coupled airwaves from volcanoes in Alaska. Bull Seismol Soc Am 106:3. https://doi.org/10.1785/0120150244

    Article  Google Scholar 

  • Firstov PP, Kravchenko NM (1996) Estimation of the amount of explosive gas released in volcanic eruptions using air waves. Volcanol Seismol 17:547–560

    Google Scholar 

  • Firstov PP, Fee D, Makhmudov ER (2013) The explosive activity of Karymskii Volcano, Kamchatka: Acoustic and seismic observations. J Volcanol Seismol 7(4):252–264

    Article  Google Scholar 

  • Ford SR, Rodgers AJ, Xu H, Templeton DC, Harben P, Foxall W, Reinke RE (2014) Partitioning of seismoacoustic energy and estimation of yield and height-of-burst/depth-of-burial for near-surface explosions. Bull Seismol Soc Am 104(2):608–623

    Article  Google Scholar 

  • Gabrielson T (2010) Krakatoa and the Royal Society: the Krakatoa explosion of 1883. Acoust Today 6(2):14–19

    Article  Google Scholar 

  • Gainville O, Blanc-Benon P, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia, PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. In: infrasound monitoring for atmospheric studies, Springer Netherland, pp 575–598

    Google Scholar 

  • Garces MA, McNutt SR (1997) Theory of the airborne sound field generated in a resonant magma conduit. J Volcanol Geotherm Res 78:155–178

    Article  Google Scholar 

  • Garces MA, Hagerty MT, Schwartz SY (1998) Magma acoustics and time-varying melt properties at Arenal Volcano, Costa Rica. Geophys Res Lett 25:2293–2296

    Article  Google Scholar 

  • Garces M, Iguchi M, Ishihara K, Morrissey M, Sudo Y, Tsutsui T (1999) Infrasonic precursors to a Vulcanian eruption at Sakurajima Volcano, Japan. Geophys Res Lett 26:2537–2540

    Article  Google Scholar 

  • Garces MA (2000) Theory of acoustic propagation in a multi-phase stratified liquid flowing within an elastic-walled conduit of varying cross-sectional area. J Volcanol. Geotherm. Res 101(1):1–17

    Article  Google Scholar 

  • Garcés M, Harris A, Hetzer C, Johnson J, Rowland S, Marchetti E, Okubo P (2003) Infrasonic tremor observed at Kīlauea Volcano, Hawai’i. Geophys Res Lett 30(20)

    Article  Google Scholar 

  • Garces M et al (2008) Capturing the acoustic fingerprint of stratospheric ash injection. EOS Trans AGU 89(40):377

    Article  Google Scholar 

  • Garces MA, Fee D, Matoza R (2013) Volcano acoustics, chapter 16. In: Fagents SA, Gregg TKP, Lopes RMC (eds) Modeling volcanic processes: the physics and mathematics of volcanism. Cambridge University Press

    Google Scholar 

  • Genco R, Ripepe M, Marchetti E, Bonadonna C, Biass S (2014) Acoustic wavefield and Mach wave radiation of flashing arcs in strombolian explosion measured by image luminance. Geophys Res Lett 41(20):7135–7142

    Article  Google Scholar 

  • Georges TM, Beasley WH (1977) Refraction of infrasound by upper-atmospheric winds. J Acoust Soc Am 61(1):28–34

    Article  Google Scholar 

  • Gerst A, Hort M, Kyle PR, Vöge M (2008) 4D velocity of Strombolian eruptions and man-made explosions derived from multiple Doppler radar instruments. J Volcanol Geoth Res 177(3):648–660

    Article  Google Scholar 

  • Gerst A, Hort M, Aster RC, Johnson JB, Kyle PR (2013) The first second of volcanic eruptions from the Erebus volcano lava lake, Antarctica—energies, pressures, seismology, and infrasound. J Geophys Res Solid Earth 118(7):3318–3340

    Article  Google Scholar 

  • Glasstone S (ed) (1977) The effects of nuclear weapons, US Department of Defense

    Google Scholar 

  • Godin OA (2006) Anomalous transparency of water-air interface for low-frequency sound. Phys Rev Lett 97:164301. https://doi.org/10.1103/PhysRevLett.97.164301

    Article  Google Scholar 

  • Godin OA (2007) Transmission of low-frequency sound through the water-to-air interface. Acoust Phys 53(3):305–312. https://doi.org/10.1134/S1063771007030074

    Article  Google Scholar 

  • Goerke VH, Young JM, Cook RK (1965) Infrasonic observations of the May 16, 1963, volcanic explosion on the Island of Bali. J Geophys Res 70(24):6017–6022

    Article  Google Scholar 

  • Gorshkov GS (1960) Determination of the explosion energy in some volcanoes according to barograms. Bull Volcanol 23:141–144

    Article  Google Scholar 

  • Gossard EE and Hooke WH (1975) Waves in the atmosphere: atmospheric infrasound and gravity waves: their generation and propagation. Elsevier, Amsterdam

    Google Scholar 

  • Goto A, and Johnson JB (2011) Monotonic infrasound and Helmholtz resonance at Volcan Villarrica (Chile). Geophys Res Lett 38. https://doi.org/10.1029/2011gl046858

    Article  Google Scholar 

  • Green DN, Neuberg J (2005) Seismic and infrasonic signals associated with an unusual collapse event at the Soufrière Hills volcano, Montserrat. Geophys Res Lett 32(7)

    Article  Google Scholar 

  • Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res 115:D18116. https://doi.org/10.1029/2010JD014017

    Article  Google Scholar 

  • Green DN, Matoza RS, Vergoz J, Le Pichon A (2012) Infrasonic propagation from the 2010 Eyjafjallajökull eruption: investigating the influence of stratospheric solar tides. J Geophys Res 117:D21202. https://doi.org/10.1029/2012JD017988

    Article  Google Scholar 

  • Green DN, Evers LG, Fee D, Matoza RS, Snellen M, Smets P, Simons D (2013) Hydroacoustic, infrasonic and seismic monitoring of the submarine eruptive activity and sub-aerial plume generation at South Sarigan, May 2010. J Volcanol Geotherm. Res 257:31–43. https://doi.org/10.1016/j.jvolgeores.2013.03.006

    Article  Google Scholar 

  • Green DN (2015) The spatial coherence structure of infrasonic waves: analysis of data from International Monitoring System arrays. Geophys J Int 201(1):377–389. https://doi.org/10.1093/gji/ggu495

    Article  Google Scholar 

  • Guilbert J, Harjadi P, Purbawinata M, Jammes S, Le Pichon A, Feignier B (2005) Monitoring of Indonesian volcanoes with infrasound: preliminary results. In: Infrasound technology workshop, Tahiti

    Google Scholar 

  • Hagerty MT, Schwartz SY, Garces MA, Protti M (2000) Analysis of seismic and acoustic observations at Arenal Volcano, Costa Rica, 1995-1997. J Volcanol Geotherm Res 101:27–65

    Article  Google Scholar 

  • Harkrider DG (1964) Theoretical and observed acoustic-gravity waves from explosive sources in the atmosphere. J Geophys Res 69(24):5295–5321

    Article  Google Scholar 

  • Harkrider D, Press F (1967) The Krakatoa air-sea waves: an example of pulse propagation in coupled systems. Geophys J Int 13(1–3):149–159

    Article  Google Scholar 

  • Harris A, Ripepe M (2007) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics–A case study from Stromboli. Chemie der Erde-Geochemistry 67(1):1–35

    Article  Google Scholar 

  • Ichihara M, Ripepe M, Goto A, Oshima H, Aoyama H, Iguchi M, Tanaka K, Taniguchi H (2009) Airwaves generated by an underwater explosion: implications for volcanic infrasound. J Geophys Res-Solid Earth 114:B03210. https://doi.org/10.1029/2008jb005792

    Article  Google Scholar 

  • Ichihara M, Takeo M, Yokoo A, Oikawa J, Ohminato T (2012) Monitoring volcanic activity using correlation patterns between infrasound and ground motion. Geophys Res Lett 39:L04304. https://doi.org/10.1029/2011GL050542

    Article  Google Scholar 

  • Iguchi M (2013) Magma movement from the deep to shallow Sakurajima Volcano as revealed by geophysical observations. Bull Volcanol Soc Japan 58(1):1–18

    Google Scholar 

  • Iguchi M, Ishihara K (1990) Comparison of earthquakes and airshocks accompanied with explosive eruptions at Sakurajima and Suwanosejima volcanoes (in Japanese). Annu Disas Prev Res Inst Kyoto Univ 33B–1:1–11

    Google Scholar 

  • Ishihara K (1985) Dynamical analysis of volcanic explosion. J Geodyn 3:327–349. https://doi.org/10.1016/0264-3707(85)90041-9

    Article  Google Scholar 

  • Johnson JB (2003) Generation and propagation of infrasonic airwaves from volcanic explosions. J Volcanol Geoth Res 121(1):1–14

    Article  Google Scholar 

  • Johnson JB (2007) On the relation between infrasound, seismicity, and small pyroclastic explosions at Karymsky Volcano. J Geophys Res Solid Earth 112:B08203. https://doi.org/10.1029/2006JB004654

  • Johnson JB, Ruiz MC, Lees JM, Ramon P (2005) Poor scaling between elastic energy release and eruption intensity at Tungurahua Volcano, Ecuador. Geophys Res Lett 32(15)

    Google Scholar 

  • Johnson JB, Malone SD (2007) Ground-coupled acoustic airwaves from Mount St. Helens provide constraints on the May 18, 1980 eruption. Earth Planet Sci Lett 258 (1–2):16–31

    Article  Google Scholar 

  • Johnson J, Aster R, Jones KR, Kyle P, McIntosh B (2008a) Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake. J Volcanol Geoth Res 177(3):673–686. https://doi.org/10.1016/j.jvolgeores.2008.06.028

    Article  Google Scholar 

  • Johnson JB, Lees JM, Gerst A, Sahagian D, Varley N (2008b) Long-period earthquakes and co-eruptive dome inflation seen with particle image velocimetry. Nature 456(7220):377–381

    Article  Google Scholar 

  • Johnson JB, Ripepe M (2011) Volcano infrasound: a review. J Volcanol Geotherm Res 206(3):61–69

    Article  Google Scholar 

  • Johnson JB, Anderson J, Marcillo O, Arrowsmith S (2012) Probing local wind and temperature structure using infrasound from Volcan Villarrica (Chile). J Geophys Res 117:D17107. https://doi.org/10.1029/2012JD017694

    Article  Google Scholar 

  • Johnson JB, Miller AJ (2014) Application of the monopole source to quantify explosive flux during vulcanian explosions at Sakurajima Volcano (Japan). Seismol Res Lett 85(6):1163–1176

    Article  Google Scholar 

  • Johnson JB, Palma JL (2015) Lahar infrasound associated with Volcán Villarrica’s 3 March 2015 eruption. Geophys Res Lett 42(15):6324–6331

    Article  Google Scholar 

  • Jones KR, Johnson JB, Aster R, Kyle PR, McIntosh WC (2008) Infrasonic tracking of large bubble bursts and ash venting at Erebus volcano, Antarctica. J Volcanol Geoth Res 177(3):661–672

    Article  Google Scholar 

  • Jones KR, Johnson JB (2011) Mapping complex vent eruptive activity at Santiaguito, Guatemala using network infrasound semblance. J Volcanol Geotherm Res 199:15–24. https://doi.org/10.1016/j.volgeores.2010.08.006

    Article  Google Scholar 

  • Kamo K, Ishihara K, Tahira M (1994) Infrasonic and seismic detection of explosive eruptions at Sakurajima volcano, Japan, and the PEGASAS-VE early-warning system. In: Proceedings of the first international symposium on volcanic ash and aviation safety, U.S. Geological Survey Bulletin 2047, pp 357–365

    Google Scholar 

  • Kanamori H, Mori J, Harkrider DG (1994) Excitation of atmospheric oscillations by volcanic eruptions. J Geophys Res 99(B11):21947–21961

    Article  Google Scholar 

  • Kim K, Lees JM (2011) Finite-difference time-domain modeling of transient infrasonic wavefields excited by volcanic explosions. Geophys Res Lett 38:L06804. https://doi.org/10.1029/2010GL046615

    Article  Google Scholar 

  • Kim K, Lees JM (2014) Local volcano infrasound and source localization investigated by 3D simulation. Seismol Res Lett 85(6):1177–1186. https://doi.org/10.1785/0220140029

    Article  Google Scholar 

  • Kim K, Fee D, Yokoo A, Lees JM (2015) Acoustic source inversion to estimate volume flux from volcanic explosions. Geophys Res Lett 42:5243–5249. https://doi.org/10.1002/2015GL064466

    Article  Google Scholar 

  • Kim K, Rodgers A (2016) Waveform inversion of acoustic waves for explosion yield estimation. Geophys Res Lett 43(13):6883–6890

    Article  Google Scholar 

  • Kinney GF, Graham KJ (1985) Explosive shocks in air. Springer Science & Business Media

    Google Scholar 

  • Kulichkov SN (2004) Long-range propagation and scattering of low-frequency sound pulses in the middle atmosphere. Meteorol Atmos Phys 85:47–60. https://doi.org/10.1007/s00703-003-0033-z

    Article  Google Scholar 

  • Lacanna G, Ripepe M (2013) Influence of near-source volcano topography on the acoustic wavefield and implication for source modeling. J Volcanol Geotherm Res 250:9–18. https://doi.org/10.1016/j.volgeores.2012.10.005

    Article  Google Scholar 

  • Lacanna G, Ichihara M, Iwakuni M, Takeo M, Iguchi M, Ripepe M (2014) Influence of atmospheric structure and topography on infrasonic wave propagation. J Geophys Res 119:2988–3005. https://doi.org/10.1002/2013JB010827

    Article  Google Scholar 

  • Lalande J-M, Sebe O, Landes M, Blanc-Benon P, Matoza RS, Le Pichon A, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190:687–701

    Article  Google Scholar 

  • Lamb H (1911) On atmospheric oscillations. Proc R Soc Lond Ser A 84(574):551–572

    Article  Google Scholar 

  • Lamb OD, De Angelis S, Lavallée Y (2015) Using infrasound to constrain ash plume rise. J Appl Volcanol 4(1):1

    Article  Google Scholar 

  • Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res 117:D06102. https://doi.org/10.1029/2011JD016684

    Article  Google Scholar 

  • Lane SJ, James MR, Corder SB (2013) Volcano infrasonic signals and magma degassing: first-order experimental insights and application to Stromboli. Earth Planet Sci Lett 377–378:169–179. https://doi.org/10.1016/j.epsl.2013.06.048

    Article  Google Scholar 

  • LeConte J (1884) Atmospheric waves from Krakatoa. Science 3(71):701–702

    Article  Google Scholar 

  • Lees JM, Gordeev EI, Ripepe M (2004) Explosions and periodic tremor at Karymsky volcano, Kamchatka, Russia. Geophys J Int 158(3):1151–1167

    Article  Google Scholar 

  • Lees JM, Johnson JB, Ruiz M, Troncoso L, Welsh M (2008) Reventador Volcano 2005: eruptive activity inferred from seismo-acoustic observation. J Volcanol Geoth Res 176(1):179–190

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110:D13106. https://doi.org/10.1029/2004JD005587

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International Monitoring System infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112. https://doi.org/10.1029/2008JD010907

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Cansi Y, Ceranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. In: infrasound monitoring for atmospheric studies, p 629–646. https://doi.org/10.1007/978-1-4020-9508-5_20

    Chapter  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121. https://doi.org/10.1029/2011JD016670

    Article  Google Scholar 

  • Lighthill MJ (1962) The Bakerian Lecture, 1961: sound generated aerodynamically. Proc R Soc Lon Ser A 267(1329):147–182

    Article  Google Scholar 

  • Lighthill MJ (1963) Jet noise. AIAA J. 1(7):1507–1517

    Article  Google Scholar 

  • Lighthill MJ (1978) Waves in fluids. Cambridge University Press

    Google Scholar 

  • Liu CH, Klostermeyer J, Yeh KC, Jones TB, Robinson T, Holt O et al (1982) Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J Geophys Res Sp Phys 87(A8):6281–6290

    Article  Google Scholar 

  • Lonzaga JB, Waxler RM, Assink JD, Talmadge CL (2015) Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory. Geophys J Int 200:1347–1361

    Article  Google Scholar 

  • Lopez T, Fee D, Prata F, Dehn J (2013) Characterization and interpretation of volcanic activity at Karymsky Volcano, Kamchatka, Russia, using observations of infrasound, volcanic emissions, and thermal imagery. Geochem Geophys Geosyst 14(12):5106–5127. https://doi.org/10.1002/2013GC004817

    Article  Google Scholar 

  • Lorenz RD, Turtle EP, Howell R, Radebaugh J, Lopes RM (2015) The roar of Yasur: Handheld audio recorder monitoring of Vanuatu volcanic vent activity, J. Geotherm Res, Volcanol in press

    Google Scholar 

  • Lyons JJ, Ichihara M, Kurokawa A, Lees JM (2013) Switching between seismic and seismo-acoustic harmonic tremor simulated in the laboratory: insights into the role of open degassing channels and magma viscosity. J Geophys Res Solid Earth 118(1):277–289

    Article  Google Scholar 

  • Marchetti E, Ichihara M, Ripepe M (2004) Propagation of acoustic waves in a viscoelastic two-phase system: influence of gas bubble concentration. J Volcanol Geotherm Res 137(1–3):93–108. https://doi.org/10.1016/j.jvolgeores.2004.05.002

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Harris AJL, Delle Donne D (2009) Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy. Earth Planet Sci Lett 279(3):273–281

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Delle Donne D, Genco R, Finizola A, Garaebiti E (2013) Blast waves from violent explosive activity at Yasur Volcano, Vanuatu. Geophys Res Lett 40(22):5838–5843

    Article  Google Scholar 

  • Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162

    Google Scholar 

  • Marcillo O, Johnson JB (2010) Tracking near-surface atmospheric conditions using an infrasound network. J Acoust Soc Am 128:EL14–19, https://doi.org/10.1121/1.3442725

    Article  Google Scholar 

  • Matoza RS, Hedlin MSH, Garces MA (2007) An infrasound array study of Mount St. Helens. J Volcanol Geotherm. Res. 160:249–262. https://doi.org/10.1016/j.jvolgeores.2006.10.006

    Article  Google Scholar 

  • Matoza RS, Garces MA, Chouet BA, D’Auria L, Hedlin MAH, de Groot-Hedlin C, Waite GP (2009a) The source of infrasound associated with long-period events at Mount St. Helens. J Geophys Res 114:B04305. https://doi.org/10.1029/2008jb006128

  • Matoza RS, Fee D, Garces MA, Seiner JM, Ramon PA, Hedlin MAH (2009b) Infrasonic jet noise from volcanic eruptions. Geophys Res Lett 36:L08303. https://doi.org/10.1029/2008GL036486

    Article  Google Scholar 

  • Matoza RS, Fee D, Garces M (2010) Infrasonic tremor wavefield of the Pu‘u O‘o crater complex and lava tube system, Hawaii, in April 2007. J Geophys Res 115:B12312. https://doi.org/10.1029/2009JB007192

    Article  Google Scholar 

  • Matoza RS, Le Pichon A, Vergoz J, Herry P, Lalande J, Lee H, Che I, Rybin A (2011a) Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of remote explosive volcanism. J Volcanol Geotherm Res 200:35–48. https://doi.org/10.1016/j.jvolgeores.2010.11.022

    Article  Google Scholar 

  • Matoza RS, Vergoz J, Le Pichon A, Ceranna L, Green DN, Evers LG, Ripepe M, Campus P, Liszka L, Kvaerna T, Kjartansson E, Hoskuldsson A (2011b) Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April-May 2010. Geophys Res Lett 38:L06308. https://doi.org/10.1029/2011GL047019

    Article  Google Scholar 

  • Matoza RS, Shearer PM, Lin G, Wolfe CJ, Okubo PG (2013a) Systematic relocation of seismicity on Hawaii Island from 1992 to 2009 using waveform cross correlation and cluster analysis. J Geophys Res Solid Earth 118(5):2275–2288

    Article  Google Scholar 

  • Matoza RS, Fee D, Neilsen TB, Gee KL, Ogden DE (2013b) Aeroacoustics of volcanic jets: acoustic power estimation and jet velocity dependence. J Geophys Res Solid Earth 118:6269–6284. https://doi.org/10.1002/2013JB010303

    Article  Google Scholar 

  • Matoza RS, Landès M, Le Pichon A, Ceranna L, Brown D (2013c) Coherent ambient infrasound recorded by the International Monitoring System. Geophys Res Lett 40. https://doi.org/10.1029/2012gl054329

    Article  Google Scholar 

  • Matoza RS, Fee D (2014) Infrasonic component of volcano-seismic eruption tremor. Geophys Res Lett 41:2014GL059301. https://doi.org/10.1002/2014gl059301

    Article  Google Scholar 

  • Matoza RS, Fee D, Lopez TM (2014) Acoustic characterization of explosion complexity at Sakurajima, Karymsky, and Tungurahua Volcanoes. Seismol Res Lett 85(6):1187–1199. https://doi.org/10.1785/0220140110

    Article  Google Scholar 

  • Matoza RS, Green DN, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res Solid Earth 122:2946–2971. https://doi.org/10.1002/2016JB013356

    Article  Google Scholar 

  • Mauk FJ (1983) Utilization of seismically recorded infrasonic-acoustic signals to monitor volcanic explosions: the El Chichon Sequence 1982–A case study. J Geophys Res Solid Earth 88(B12):10385–10401

    Article  Google Scholar 

  • Mialle P et al (2015) Towards a volcanic notification system with infrasound data: use of infrasound data in support of the VAACs in the framework of ARISE project. In: World meteorological organization 7th international workshop on volcanic ash (IWVA/7), Anchorage, Alaska

    Google Scholar 

  • McNutt SR (2000) Seismic monitoring. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, Calif

    Google Scholar 

  • McNutt SR, Nishimura T (2008) Volcanic tremor during eruptions: temporal characteristics, scaling and constraints on conduit size and processes. J Volcanol Geotherm Res 178:10–18. https://doi.org/10.1016/j.jvolgeores.2008.03.010

    Article  Google Scholar 

  • McNutt SR, Thompson G, Johnson J, De Angelis S, Fee D (2015) Seismic and infrasonic monitoring, Chapter 63. In: Sigurdsson H, Houghton B, McNutt S, Rymer H (eds) The Encyclopedia of Volcanoes, Second Edition. Academic Press, J. Stix, pp 1071–1099

    Chapter  Google Scholar 

  • Medici EF, Allen JS, Waite GP (2014) Modeling shock waves generated by explosive volcanic eruptions. Geophys Res Lett 41(2):414–421

    Article  Google Scholar 

  • Moran SC, Matoza RS, Garces MA, Hedlin MAH, Bowers D, Scott WE, Sherrod DR, Vallance JW (2008) Seismic and acoustic recordings of an unusually large rockfall at Mount St. Helens, Washington. Geophys Res Lett 35(19). https://doi.org/10.1029/2008gl035176

  • Morrissey MM, Chouet BA (1997) Burst conditions of explosive volcanic eruptions recorded on microbarographs. Science 275(5304):1290–1293

    Article  Google Scholar 

  • Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, Princeton, NJ

    Google Scholar 

  • Needham CE (2010) Blast wave propagation. Springer, Berlin, Germany, pp 87–99

    Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude of historical volcanism. J Geophys Res 87:1231–1238

    Article  Google Scholar 

  • Nishida K, Ichihara M (2016) Real-time infrasonic monitoring of the eruption at a remote island volcano using seismoacoustic cross correlation. Geophys J Int 204(2):748–752

    Article  Google Scholar 

  • Omori F (1912) The eruptions and earthquakes of the Asama-Yama. Bull Imp Earthq Inv Commitee 6(1)

    Google Scholar 

  • Oshima H, Maekawa T (2001) Excitation process of infrasonic waves associated with Merapi-type pyroclastic flow as revealed by a new recording system. Geophys Res Lett 28(6):1099–1102

    Article  Google Scholar 

  • Ostashev VE (1997) Acoustics in moving inhomogeneous media. E & FN Spon, London

    Google Scholar 

  • Pekeris CL (1939) The propagation of a pulse in the atmosphere. Proc R Soc LonSer A 171(947):434–449

    Article  Google Scholar 

  • Perret FA (1950) Volcanological Observations. Carnegie Institution Of Washington Publication

    Google Scholar 

  • Pierce AD (1963) Propagation of acoustic-gravity waves from a small source above the ground in an isothermal atmosphere. J Acoust Soc Am 35(11):1798–1807

    Article  Google Scholar 

  • Pierce AD (1989) Acoustics: an introduction to its physical principals and applications. Acoustical Society of America, Melville, N. Y.

    Google Scholar 

  • Piercy JE, Embleton TFW, Sutherland LC (1977) Review of noise propagation in the atmosphere. J Acoust Soc Am 61(6):1403–1418

    Article  Google Scholar 

  • Prejean SG, Brodksy EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res 116:B01306. https://doi.org/10.1029/2010JB007620

    Article  Google Scholar 

  • Press F, Harkrider D (1962) Propagation of acoustic-gravity waves in the atmosphere. J Geophys Res 67(10):3889–3908

    Article  Google Scholar 

  • Press F, Harkrider D (1966) Air-sea waves from the explosion of Krakatoa. Science 154(3754):1325–1327

    Article  Google Scholar 

  • Reed JW (1977) Atmospheric attenuation of explosion waves. J Acoust Soc Am 61(1):39–47

    Article  Google Scholar 

  • Reed JW (1987) Air-pressure waves from Mount St. Helens Eruptions. J Geophys Res Atmos 92(D10):11979–11992, https://doi.org/10.1029/jd092id10p11979

    Article  Google Scholar 

  • Reynolds JWS (1878) The theory of sound, vol II. The Macmillan Company

    Google Scholar 

  • Richards AF (1963) Volcanic sounds, investigation and analysis. J Geophys Res Solid Earth 68:919–928

    Article  Google Scholar 

  • Richardson JP, Waite GP, Palma JL (2014) Varying seismic-acoustic properties of the fluctuating lava lake at Villarrica volcano, Chile. J Geophys Res Solid Earth 119(7):5560–5573

    Article  Google Scholar 

  • Ripepe M, Poggi P, Braun T, Gordeev E (1996) Infrasonic waves and volcanic tremor at Stromboli. Geophys Res Lett 23(2):181–184

    Article  Google Scholar 

  • Ripepe M, Marchetti E (2002) Array tracking of infrasonic sources at Stromboli volcano. Geophys Res Lett 29(22)

    Article  Google Scholar 

  • Ripepe M, Marchetti E (2019) Infrasound monitoring of volcano-related hazards for civil protection. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1107–1140

    Google Scholar 

  • Ripepe M, Marchetti E, Ulivieri G (2007) Infrasonic monitoring at Stromboli volcano during the 2003. J Geophys Res Solid Earth 112:B09207. https://doi.org/10.1029/2006JB004613

    Article  Google Scholar 

  • Ripepe M, De Angelis S, Lacanna G, Poggi P, Williams C, Marchetti E, Donne DD, Ulivieri G. Tracking pyroclastic flows at Soufrière Hills Volcano (2009) Eos. Trans Am GeophysChile 90(27):229–30

    Article  Google Scholar 

  • Ripepe M, De Angelis S, Lacanna G, Voight B (2010a) Observation of infrasonic and gravity waves at Soufrière Hills Volcano, Montserrat. Geophys Res Lett. 37(L00E14). https://doi.org/10.1029/2010gl042557

    Article  Google Scholar 

  • Ripepe M, Marchetti E, Bonadonna C, Harris AJL, Pioli L, Ulivieri G (2010b) Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile. Geophys Res Lett 37:L15303. https://doi.org/10.1029/2010gl043516

    Article  Google Scholar 

  • Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet Sci Lett 366:112–121

    Article  Google Scholar 

  • Rowell CR, Fee D, Szuberla CAL, Arnoult K, Matoza RS, Firstov PP, Kim K, Makhmudov E (2014) Three-dimensional volcano-acoustic source localization at Karymsky Volcano, Kamtchatka, Russia. J Volcanol Geotherm Res 283:101–115. https://doi.org/10.1016/j.volgeores.2014.06.015

    Article  Google Scholar 

  • Sahetapy-Engel ST, Harris AJ, Marchetti E (2008) Thermal, seismic and infrasound observations of persistent explosive activity and conduit dynamics at Santiaguito lava dome, Guatemala. J Volcanol Geoth Res 173(1):1–14

    Article  Google Scholar 

  • Sakai T, Yamasato H, Uhira K (1996) Infrasound accompanying C-type tremor at Sakurajima volcano. Bull Volcano Soc Jpn 41:181–185 (in Japanese)

    Google Scholar 

  • Scott RH (1884) Note on a series of barometrical disturbances which passed over Europe between the 27th and the 31st of August, 1883. Proc R Soc Lon 36:139–143

    Article  Google Scholar 

  • Segall P (2010) Earthquake and volcano deformation. Princeton University Press, New Jersey

    Book  Google Scholar 

  • Siebert L, Simkin T (2002-) Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions, Smithsonian Institution, Global Volcanism Program digital information series, GVP-3

    Google Scholar 

  • Snodgrass JM, Richards AF (1956) Observations of underwater volcanic acoustics at Barcena volcano, San Benedicto Island, Mexico, and in Shelikof Strait, Alaska. Trans Am Geophys Union 37:97–104

    Article  Google Scholar 

  • Sparks, RSJ, Burski MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley-Blackwell

    Google Scholar 

  • Strachey RH (1884) Note on the foregoing paper. Proc R Soc Lond 36:143–151

    Article  Google Scholar 

  • Strachey RH (1888) On the air waves and sounds caused by the eruption of Krakatoa in August 1883. In: Symons GJ (ed) The eruption of Krakatoa and subsequent phenomena, Report of the Krakatoa Committee of the Royal Society, Trübner and Co, Ludgate Hill

    Google Scholar 

  • Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115(3):1012–1032. https://doi.org/10.1121/1.1631937

    Article  Google Scholar 

  • Taddeucci J, Scarlato P, Capponi A, Del Bello E, Cimarelli C, Palladino DM, Kueppers U (2012) High-speed imaging of Strombolian explosions: the ejection velocity of pyroclasts. Geophys Res Lett 39:L02301. https://doi.org/10.1029/2011GL050404

    Article  Google Scholar 

  • Taddeucci J, Sesterhenn J, Scarlato P, Stampka K, Del Bello E, Pena Fernandez JJ, Gaudin D (2014) High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions. Geophys Res Lett 41(9):2014GL059925. https://doi.org/10.1002/2014gl059925

    Article  Google Scholar 

  • Tahira M (1982) A study of the infrasonic wave in the atmosphere: (II) infrasonic waves generated by the explosions of the volcano Sakurajima. J Meteorol Soc Jpn 60(3):896–907

    Article  Google Scholar 

  • Tahira M, Nomura M, Sawada Y, Kamo K (1996) Infrasonic and acoustic-gravity waves generated by the Mount Pinatubo eruption of June 15, 1991. In: Newhall C, Punongbayan R (eds) Fire and mud: eruptions and lahars of mount Pinatubo, Philippines. University of Washington Press, Seattle and London

    Google Scholar 

  • Tailpied D, Le Pichon A, Marchetti E, Ripepe M, Kallel M, Ceranna L, Brachet N (2013) Remote infrasound monitoring of Mount Etna: observed and predicted network detection capability. InfraMatics 2(1). https://doi.org/10.4236/inframatics.2013.21001

    Article  Google Scholar 

  • Taisne B, Whelley P, Le Pichon A, Newhall C (2012) On the use of an infrasonic array at Singapore for volcanoes monitoring, EGU General Assembly

    Google Scholar 

  • Taisne B, Perttu A, Tailpied D, Caudron C, Simonini L (2019) Atmospheric controls on ground- and space-based remote detection of volcanic ash injection into the atmosphere, and link to early warning systems for aviation hazard mitigation. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1079–1105

    Google Scholar 

  • Tam CKW (1998) Jet noise: since 1952. Theor Comput Fluid Dyn 10:393–405

    Article  Google Scholar 

  • Tam CKW, Viswanathan K, Ahuja KK, Panda J (2008) The sources of jet noise: experimental evidence. J Fluid Mech 615:253–292

    Article  Google Scholar 

  • Taylor GI (1929) Waves and tides in the atmosphere. Proc R Soc Lond Ser A, 126(800):169–183

    Article  Google Scholar 

  • Taylor GI (1936) The oscillations of the atmosphere. Proc R Soc Lond Ser A, 156(888):318–326

    Article  Google Scholar 

  • Tempest A, Flett JS (1903) Report on the Eruptions of the Soufriere, in St. Vincent, in 1902, and on a Visit to Montagne Pelee, in Martinique - Part I. Philos Trans R Soc Lond Ser A 200:353–553

    Article  Google Scholar 

  • Tupper A, Itikarai I, Richards M, Prata F, Carn S, Rosenfeld D (2007) Facing the challenges of the international airways volcano watch: the 2004/05 eruptions of Manam, Papua New Guinea. Weather Forecast 22(1):175–191

    Article  Google Scholar 

  • Ulivieri G, Ripepe M, Marchetti E (2013) Infrasound reveals transition to oscillatory discharge regime during lava fountaining: implication for early warning. Geophys Res Lett 40(12):3008–3013

    Article  Google Scholar 

  • Verbeek (1884) The Krakatoa eruption. Nature 30(757):10–15

    Article  Google Scholar 

  • Vergniolle S, Brandeis G (1994) Origin of the sound generated by strombolian explosions. Geophys Res Lett 21:1959–1962

    Article  Google Scholar 

  • Vergniolle S, Brandeis G, Mareschal JC (1996) Strombolian explosions: 2. Eruption dynamics determined from acoustic measurements. J Geophys Res Solid Earth 101(B9):20449–20466

    Article  Google Scholar 

  • Vergniolle S, Caplan-Auerbach J (2006) Basaltic thermals and subplinian plumes: constraints from acoustic measurements at Shishaldin volcano, Alaska. Bull Volcanol 68(7–8):611–630

    Article  Google Scholar 

  • Vidal V, Ripepe M, Divoux T, Legrand D, Géminard JC, Melo F (2010) Dynamics of soap bubble bursting and its implications to volcano acoustics. Geophys Res Lett 37(7)

    Article  Google Scholar 

  • Viswanathan K (2009) Mechanisms of jet noise generation: classical theories and recent developments. Int J Aeroacoust 8(4):355–408

    Article  Google Scholar 

  • Walker KT, Hedlin MAH (2010) A review of wind-noise reduction methodologies. In: Pichon AL, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chap. 5, Springer, Netherlands, pp 141–182

    Google Scholar 

  • Watada S, Kanamori H (2010) Acoustic resonant oscillations between the atmosphere and the solid earth during the 1991 Mt. Pinatubo eruption. J Geophys Res Solid Earth 115:B12319. https://doi.org/10.1029/2010JB007747

    Article  Google Scholar 

  • Waythomas CF, Haney MM, Fee D, Schneider DJ, Wech A (2014) The 2013 eruption of Pavlof Volcano, Alaska: a spatter eruption at an ice-and snow-clad volcano. Bull Volcanol 76(10):1–12

    Article  Google Scholar 

  • Wilson CR, Forbes RB (1969) Infrasonic waves from Alaskan volcanic eruptions. J Geophys Res 74:4511–4522

    Article  Google Scholar 

  • Wilson CR, Nichparenko S, Forbes RB (1966) Evidence of two sound channels in the polar atmosphere from infrasonic observations of the eruption of an Alaskan volcano. Nature 211:163–165

    Article  Google Scholar 

  • Woulff G, McGetchin TR (1976) Acoustic noise from volcanoes: theory and experiment. Geophys J R Astr Soc 45:601–616

    Article  Google Scholar 

  • Yamasato H (1997) Quantitative analysis of pyroclastic flows using infrasonic and seismic data at Unzen volcano, Japan. J Phys Earth 45(6):397–416

    Article  Google Scholar 

  • Yamasato H (1998) Nature of infrasonic pulse accompanying low frequency earthquake at Unzen Volcano, Japan. Bull Volcanol Soc Jpn 43:1–13

    Google Scholar 

  • Yokoo A, Ishihara K (2007) Analysis of pressure waves observed in Sakurajima eruption movies. Earth Planet Sp 59(3):177–181

    Article  Google Scholar 

  • Yokoo A, Tameguri T (2007) Iguchi M (2009) Swelling of a lava plug associated with a Vulcanian eruption at Sakurajima Volcano, Japan, as revealed by infrasound record: case study of the eruption on January 2. Bull Volc 71(6):619–630. https://doi.org/10.1007/s00445-008-0247-5

    Article  Google Scholar 

  • Yokoo A, Iguchi M, Tameguri T, Yamamoto K (2013) Processes prior to outbursts of vulcanian eruption at Showa crater of Sakurajima volcano. Bull Volcanol Soc Jpn 58:163–181

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF grants EAR-1546139 and EAR-1614855.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin Matoza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Matoza, R., Fee, D., Green, D., Mialle, P. (2019). Volcano Infrasound and the International Monitoring System. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_33

Download citation

Publish with us

Policies and ethics