Infrasound Monitoring as a Tool to Characterize Impacting Near-Earth Objects (NEOs)

  • Elizabeth SilberEmail author
  • Peter Brown


Infrasound, the low-frequency sound lying below the human hearing range, has the capability to propagate over very long distances in the atmosphere due to its low attenuation. Thus, infrasound can serve as a tool for monitoring explosive sources, including extraterrestrial bodies impacting the Earth’s atmosphere. This chapter describes the theoretical background on meteor physics and bolide infrasound, as well as applications of infrasound in Near-Earth Objects (NEOs) monitoring and characterization. In addition to presenting a comprehensive list of empirical relations to estimate bolide energy release, this chapter summarizes recent case studies where infrasound served as an instrumental tool in characterizing the source.


  1. Aftosmis MJ, Nemec M, Mathias D, Berger M (2016) Numerical simulation of bolide entry with ground footprint prediction. In: 54th AIAA Aerospace sciences meeting. American Institute of Aeronautics and Astronautics, Reston, VA, pp 1–18.
  2. Anderson J (2006) Hypersonic and high-temperature gas dynamics, 2nd Ed. AIAA Education SeriesGoogle Scholar
  3. Barringer DM Jr (1928) A new meteor crater. In: Proceedings of the academy of natural sciences of Philadelphia, 307–311Google Scholar
  4. Bass HE (1972) Atmospheric absorption of sound: analytical expressions. J Acoust Soc Am 52:821–825CrossRefGoogle Scholar
  5. Beer T (1974) Atmospheric waves. Halsted Press, Adam Hilger, Ltd, New York, London, 315 ppGoogle Scholar
  6. Binzel RP, Reddy V, Dunn T (2015) The Near-Earth object population: connections to Comets, Main-Belt Asteroids, and Meteorites. In: Michel P et al. (ed), Asteroids IV. University of Arizona Press, pp 243–256. Scholar
  7. Bjork RL (1961) Analysis of the formation of Meteor Crater, Arizona: a preliminary report. J Geophys Res 66(10):3379–3387CrossRefGoogle Scholar
  8. Blanc E, Perez S, Issartel JP, Millies-Lacroix JC (1997) Detection of nuclear explosions in the atmosphere. Chocs 23–34Google Scholar
  9. Borovička (2008) Event reported on IAU circular 8994, central bureau of astronomical telegrams. Smithsonian Astrophysical Observatory, Cambridge, MA, 8 Oct 2008Google Scholar
  10. Borovička J (1993) A fireball spectrum analysis. Astron Astrophys 279:627–645Google Scholar
  11. Borovička J, Spurný P, Brown P (2015) Small near-Earth asteroids as a source of meteorites. Asteroids IV, 257Google Scholar
  12. Borovička J, Spurný P, Brown P, Wiegert P, Kalenda P, Clark D, Shrbený L (2013) The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503(7475):235–237CrossRefGoogle Scholar
  13. Boslough MBE, Crawford DA (2008) Low-altitude airbursts and the impact threat. Int J Impact Eng 35(12):1441–1448CrossRefGoogle Scholar
  14. Boslough M, Brown P, Harris A (2015) Updated population and risk assessment for airbursts from near-Earth objects (NEOs). In: 2015 IEEE aerospace conference. IEEE, pp 1–12Google Scholar
  15. Bowell E, Muinonen K (1994) Earth-crossing asteroids and comets: groundbased search strategies. In: T Gehrels (ed) Hazards due to Comets and Asteroids, pp 149–197Google Scholar
  16. Boyd ID (1998) Computation of atmospheric entry flow about a Leonid meteoroid. Earth Moon Planet 82:93–108. Scholar
  17. Briani G, Pupillo G, Aiello S, Pace E, Shore S, Passaro A (2007) Study of the interaction of micrometeoroids with Earth’s atmosphere. Memorie della Societa Astronomica Italiana Supplementi 11:89Google Scholar
  18. Bronshten VA (1964) Problems of the movements of large meteoric bodies in the atmosphere. National Aeronautics and Space Administration, TT-F-247Google Scholar
  19. Bronshten VA (1983) Physics of Meteoric Phenomena. 372 pp. D. Reidel, Dordrecht, NetherlandsCrossRefGoogle Scholar
  20. Brown PG, Assink JD, Astiz L, Blaauw R, Boslough MB, Borovička J, 26 co-authors (2013) A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503:238–241. Scholar
  21. Brown PG, Dube K, Silber E (2014) Detecting NEO impacts using the international monitoring system. In AAS/Division for planetary sciences meeting abstracts, vol 46Google Scholar
  22. Brown PG, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP (2002) The flux of small near-Earth objects colliding with the Earth. Nature 420:294–296. Scholar
  23. Brown P, McCausland PJA, Fries M, Silber E, Edwards WN, Wong DK, Weryk RJ, Fries J, Krzeminski Z (2011) The fall of the Grimsby meteorite—I: fireball dynamics and orbit from radar, video, and infrasound records. Meteor Planet Sci 46(3):339–363CrossRefGoogle Scholar
  24. Brown P, ReVelle DO, Silber EA, Edwards WN, Arrowsmith S, Jackson LE, Tancredi G, Eaton D (2008) Analysis of a crater‐forming meteorite impact in Peru. J Geophys Res Planets 113(E9)Google Scholar
  25. Brown P, Weryk RJ, Kohut S, Edwards WN, Krzeminski Z (2010) Development of an all-sky video meteor network in Southern Ontario, Canada the ASGARD system. WGN J Int Meteor Organ 38:25–30Google Scholar
  26. Brown P, Wiegert P, Clark D, Tagliaferri E (2016) Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266:96–111CrossRefGoogle Scholar
  27. Brown PG, Edwards WN, ReVelle DO, Spurny P (2007) Acoustic analysis of shock production by very high-altitude meteors—I: infrasonic observations, dynamics and luminosity. J Atmos Solar Terr Phys 69:600–620. Scholar
  28. Buratti BJ, Johnson LL (2003) Identification of the lunar flash of 1953 with a fresh crater on the Moon’s surface. Icarus 161(1):192–197CrossRefGoogle Scholar
  29. Campbell-Brown MD, Koschny D (2004) Model of the ablation of faint meteors. Astron Astrophys-Berl Then Les Ulis 418(2):751–758CrossRefGoogle Scholar
  30. Carlson HW, Maglieri DJ (1972) Review of sonic-boom generation theory and prediction methods. J Acoust Soc Am 51:675CrossRefGoogle Scholar
  31. Ceplecha Z (1994) Impacts of meteoroids larger than 1 m into the Earth’s Atmosphere. Astron Astrophys 286:967–970Google Scholar
  32. Ceplecha Z, Revelle DO (2005) Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteor Planet Sci 40(1):35–54. Scholar
  33. Ceplecha Z, Borovička J, Elford WG, ReVelle DO, Hawkes RL, Porubčan V, Šimek M (1998) Meteor phenomena and bodies. Space Sci Rev 84(3–4):327–471CrossRefGoogle Scholar
  34. Ceplecha Z, Borovička J, Spurný P (2000) Dynamical behavior of meteoroids in the atmosphere derived from very precise photographic records. Astron Astrophys 357:1115–1122Google Scholar
  35. Ceplecha Z, Spurny P, Borovička J, Keclikova J (1993) Atmospheric fragmentation of meteoriods. Astron Astrophys 279:615–626Google Scholar
  36. Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367(6458):33–40CrossRefGoogle Scholar
  37. Chesley SR, Farnocchia D, Brown PG, Chodas PW (2015) Orbit estimation for late warning asteroid impacts: The case of 2014 AA. In: Aerospace conference, 2015 IEEE. IEEE, pp 1–8Google Scholar
  38. Chesley SR, Spahr TB (2004) Earth-impactors: Orbital characteristics and warning times. In: Belton MJS, Morgan TH, Samarashinha NH, Yeomans DK (eds) Mitigation of hazardous Comets and Asteroids. Cambridge University Press, Cambridge, pp 22–37CrossRefGoogle Scholar
  39. Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 29–75. Scholar
  40. Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361(6407):40–44CrossRefGoogle Scholar
  41. Clauter DA, Blandford RR (1998) Capability modeling of the proposed international monitoring system 60-station infrasonic network. Technical report LAUR-98-56. Los Alamos National Labs, Los Alamos, New MexicoGoogle Scholar
  42. Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteor Planet Sci 40(6):817–840CrossRefGoogle Scholar
  43. Cook RK, Bedard AJ Jr (1972) On the measurement of Infrasound Q. J R Astron Soc 67:5–11Google Scholar
  44. Cotten D, Donn WL (1971) Sound from Apollo rockets in space. Science 171(3971):565–567CrossRefGoogle Scholar
  45. de Groot-Hedlin CD, Hedlin MA, Drob DP (2010) Atmospheric variability and infrasound monitoring. In: Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 475–507Google Scholar
  46. de Groot-Hedlin C, Hedlin M (2014) USArray recordings of infrasound generated by the Chelyabinsk Meteor and other, smaller bolides. In: EGU general assembly conference abstracts, vol 16, p 8823Google Scholar
  47. Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26(1–4):111–133CrossRefGoogle Scholar
  48. Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res Atmos (1984–2012), 108(D21)Google Scholar
  49. DuMond JW, Cohen ER, Panofsky WKH, Deeds E (1946) A determination of the wave forms and laws of propagation and dissipation of ballistic shock waves. J Acoust Soc Am 18:97CrossRefGoogle Scholar
  50. Edwards WN (2007) Meteoroid kinetic energy estimation using infrasonic and seismic observations of meteor generated sound. PhD. Thesis, University of Western Ontario, Department of Earth SciencesGoogle Scholar
  51. Edwards WN, Brown PG, Weryk RJ, ReVelle DO (2008) Infrasonic observations of meteoroids: preliminary results from a coordinated optical-radar-infrasound observing campaign. Earth, Moon, and Planets 102(1–4):221–229. Scholar
  52. Edwards WN (2010) Meteor generated infrasound: theory and observation. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 361–414. Scholar
  53. Emanuel G (2000) Theory of shock waves, in handbook of shock waves. In: Ben-Dor G, Igra O, Elperin T (eds) Three volume set. Academic PressGoogle Scholar
  54. Ens TA, Brown PG, Edwards WN, Silber EA (2012) Infrasound production by bolides: A global statistical study. J Atmos Solar Terr Phys 80:208–229. Scholar
  55. Evans LB, Bass HE, Sutherland LC (1972) Atmospheric absorption of sound: theoretical predictions. J Acoust Soc Am 51:1565CrossRefGoogle Scholar
  56. Evers LG, Haak HW (2003) Tracing a meteoric trajectory with infrasound. Geophy Res Lett 30(24):1–4Google Scholar
  57. Evers LG, Haak HW (2010) The characteristics of infrasound, its propagation and some early history. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 3–27CrossRefGoogle Scholar
  58. Farnocchia D, Chesley SR, Brown PG, Chodas PW (2016) The trajectory and atmospheric impact of asteroid 2014 AA. Icarus 274:327–333CrossRefGoogle Scholar
  59. Few AA (1969) Power spectrum of thunder. J Geophys Res 74:6926–6934. Scholar
  60. Gardner CS, Hostetler CA, Franke SJ (1993) Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations. J Geophys Res 98(D1):1035–1049CrossRefGoogle Scholar
  61. Georges TM, Beasley WH (1977) Refraction of infrasound by upper-atmospheric winds. J Acoust Soc Am 61:28CrossRefGoogle Scholar
  62. Glasstone S, Dolan PJ (1977) The Effects of Nuclear Weapons. United States Department of Defense and Department of Energy, Washington, DC, USAGoogle Scholar
  63. Golden P, Herrin ET, Negraru PT (2007) Infrasound in the zone of silence. In: Proceedings of the European geophysical union, Vienna, Apr 2007Google Scholar
  64. Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res: Atmos 115(D18)Google Scholar
  65. Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185(2):890–910CrossRefGoogle Scholar
  66. Groves GV (1963) Initial expansion to ambient pressure of chemical explosive releases in the upper atmosphere. J Geophys Res 68(10):3033–3047CrossRefGoogle Scholar
  67. Halliday I, Blackwell AT, Griffin A (1978) The Innisfree meteorite and the Canadian camera network. R Astron Soc Can J 72:15–39.…15H
  68. Harris A (2008) What spaceguard did. Nature 453(7199):1178–1179CrossRefGoogle Scholar
  69. Harris AW, Boslough M, Chapman CR, Drube L, Michel P (2015) Asteroid impacts and modern civilization: can we prevent a catastrophe?. Asteroids IV 835–854Google Scholar
  70. Harris AW, D’Abramo G (2015) The population of near-Earth asteroids. Icarus 257:302–312CrossRefGoogle Scholar
  71. Hayes W, Probstein RF (1959) Hypersonic flow theory, vol 5. ElsevierGoogle Scholar
  72. Haynes CP, Millet C (2013) A sensitivity analysis of meteoric infrasound. J Geophys Res Planets 118(10):2073–2082. Scholar
  73. Henneton M, Gainville O, Coulouvrat F (2015) Numerical simulation of sonic boom from hypersonic meteoroids. AIAA J 53(9):2560–2570. Scholar
  74. Herrin ET, Golden PW, Negraru PT, McKenna MH (2007) Infrasound in the zone of silence, proceedings of the 29th monitoring research review: ground-based nuclear explosion monitoring technologies. Denver, CO, pp 25–27, Sep 2007Google Scholar
  75. Hills JG, Goda MP (1998) Damage from the impacts of small asteroids. Planet Space Science 46(2–3):219–229CrossRefGoogle Scholar
  76. Hunt JN, Palmer R, Penney W (1960) Atmospheric waves caused by large explosions. Philos Trans R Soc Lond A 252(1011):275–315CrossRefGoogle Scholar
  77. Ivezic Z, Tyson JA, Abel B, Acosta E, Allsman R, AlSayyad Y, Anderson SF et al (2008) LSST: from science drivers to reference design and anticipated data products. arXiv:0805.2366
  78. Jedicke R, Granvik M, Micheli M, Ryan E, Spahr T, Yeomans DK (2015) Surveys, astrometric follow-up and population statistics. In: Michel P et al (ed) Asteroids IV. University of Arizona Press, pp 795–813. Scholar
  79. Jenniskens P et al (2009) The impact and recovery of asteroid 2008 TC3. Nature 458(7237):485–488CrossRefGoogle Scholar
  80. Jenniskens P, Shaddad MH (2010) 2008 TC3: the small asteroid with an impact. Meteor Planet Sci 45(10–11):1553–1556CrossRefGoogle Scholar
  81. Jones DL, Goyer GG, Plooster MN (1968) Shock wave from a lightning discharge. J Geophys Res 73:3121–3127CrossRefGoogle Scholar
  82. Keay CS (1980) Anomalous sounds from the entry of meteor fireballs. Science 210(4465):11–15CrossRefGoogle Scholar
  83. Keay CSL, Ceplecha Z (1994) Rate of observation of electrophonic meteor fireballs. J Geophys Res Planets (1991–2012), 99(E6):13163–13165CrossRefGoogle Scholar
  84. Kinney GF, Graham KJ (1985) Explosive shocks in air, vol 282. Springer, Berlin, New York, p 1CrossRefGoogle Scholar
  85. Kowalski RA et al (2008) Minor Planet Electron Circ 2008-T50Google Scholar
  86. Kowalski RA et al (2014) Minor Planet Electron Circ 2014-A02Google Scholar
  87. Kozubal MJ, Gasdia FW, Dantowitz RF, Scheirich P, Harris AW (2011) Photometric observations of Earth-impacting asteroid 2008 TC3. Meteor Planet Sci 46(4):534–542CrossRefGoogle Scholar
  88. Kraemer DR (1977) Infrasound from accurately measured meteor trails, PhD thesis Michigan Univ, Ann Arbor, MI, USAGoogle Scholar
  89. Krehl P (2001) History of shock waves. In: Ben-Dor G et al (ed) Handbook of shock waves, vol 1. Academic Press, New York, pp 1–142Google Scholar
  90. Krehl PO (2009) History of shock waves, explosions and impact: a chronological and biographical reference. SpringerGoogle Scholar
  91. Kring DA (2007) Guidebook to the geology of barringer meteorite crater, arizona (aka Meteor Crater). Lunar and Planetary Institute, HoustonGoogle Scholar
  92. Krinov EL (1963) The Tunguska and Sikhote-Alin meteorites. Moon Meteor Comets 1:208Google Scholar
  93. Krinov EL (1966) Giant meteorites. Translated from the Russian by JS Romankiewicz. Translation edited by MM Beynon, 1. Oxford, New York, Pergamon Press [1966][1st English ed]Google Scholar
  94. Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 511–540CrossRefGoogle Scholar
  95. Landau LD (1945) On shock waves at a large distance from the place of their origin. Sov J Phys 9:496Google Scholar
  96. Le Pichon A, Ceranna L, Vergoz J, Tailpied D (2019) Modeling the detection capability of the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 593–604Google Scholar
  97. Le Pichon A, Antier K, Cansi Y, Hernandez B, Minaya E, Burgoa B, Drob D, Evers LG, Vaubaillon J (2008) Evidence for a meteoritic origin of the September 15, 2007, Carancas crater. Meteor Planet Sc 43(11):1797–1809CrossRefGoogle Scholar
  98. Lin SC (1954) Cylindrical shock waves produced by instantaneous energy release. J Appl Phys 25:54–57. Scholar
  99. Maglieri DJ, Plotkin KJ (1991) Sonic boom. In Aeroacoustics of flight vehicles: theory and practice. Volume 1: noise sources, vol 1, pp 519–561Google Scholar
  100. Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZN (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314(5805):1573–1577CrossRefGoogle Scholar
  101. Marsh DR, Janches D, Feng W, Plane J (2013) A global model of meteoric sodium. J Geophys Res Atmos 118(19):11–442CrossRefGoogle Scholar
  102. Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  103. Mathias DL, Robertson DK, Aftosmis MJ (2015) Sensitivity of ground damage predictions to meteoroid breakup modeling assumptions, IAA-PDC-15-05-04. In: 4th IAA planetary defense conference—PDC 2015, 13–17 Apr 2015, Frascati, Roma, ItalyGoogle Scholar
  104. McCrosky RE, Boeschenstein H (1965) The prairie meteorite network. Smithsonian Astrophysical Observatory special report 173:1–26Google Scholar
  105. McIntosh BA, Watson MD, ReVelle DO (1976) Infrasound from a radar-observed meteor. Can J Phys 54(6):655–662CrossRefGoogle Scholar
  106. McKinley DWR (1961) Meteor science and engineering. McGraw-Hill Inc., New York, NYGoogle Scholar
  107. McKisic JM (1997) Infrasound and the infrasonic monitoring of atmospheric nuclear explosions: a literature review. Final report PL-TR-97-2123. Department of Energy and Phillips Laboratory, National Technical Information Service, p 310Google Scholar
  108. Mersenne M (1636) Harmonie universelle; translate Chapman R: (1957). The books on instruments. Nijhoff, The HagueGoogle Scholar
  109. Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248Google Scholar
  110. Millet C, Haynes CP (2010) Stochastic model approach of meteor-generated infrasound. AIAA Paper, 7999Google Scholar
  111. Morrison D (1992) The spaceguard survey: report of the NASA international Near-Earth-Object detection workshopGoogle Scholar
  112. Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New YorkGoogle Scholar
  113. Murdin P (2000) Sikhote Alin Meteorite. Encycl Astron Astrophys 1:5379Google Scholar
  114. Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 455–474CrossRefGoogle Scholar
  115. Mutschlecner JP, Whitaker R, Auer LH (1999) An empirical study of infrasonic propagation. Technical report LA-13620-MS. Los Alamos National Lab, Los Alamos, NMGoogle Scholar
  116. Needham CE (2010) Blast waves, shock wave and high pressure phenomena. Springer, pp 339Google Scholar
  117. Nemtchinov IV, Popova OP (1997) An analysis of the 1947 Sikhote-Alin event and a comparison with the phenomenon of February 1, 1994. Sol Syst Res 31:408Google Scholar
  118. Nemtchinov IV, Shuvalov VV, Artem’eva NA, Ivanov BA, Kosarev IB, Trubetskaya IA (1998) Light flashes caused by meteoroid impacts on the lunar surface. Sol Syst Res 32:99Google Scholar
  119. Norris D, Gibson R (2001) InfraMAP propagation modeling enhancements and the study of recent bolide events. In: 23rd Seismic research review: worldwide monitoring of nuclear explosions. Jackson Hole, WyomingGoogle Scholar
  120. Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 541–573CrossRefGoogle Scholar
  121. O’Keefe JD, Ahrens TJ (1982) Impact mechanics of the Cretaceous-Tertiary extinction bolide. Nature 298(5870):123–127CrossRefGoogle Scholar
  122. Öpik EJ (1958) Physics of meteor flight in the atmosphere. Interscience Publishers, New York 1958:1Google Scholar
  123. Ortiz JL, Quesada JA, Aceituno J, Aceituno FJ, Rubio LB (2002) Observation and interpretation of Leonid impact flashes on the Moon in 2001. Astrophys J 576(1):567CrossRefGoogle Scholar
  124. Pan YS, Sotomayer WA (1972) Sonic boom of hypersonic vehicles. AIAA J 10:550–551Google Scholar
  125. Peitgen H, Saupe D (eds) (1998) The science of fractal images. SpringerGoogle Scholar
  126. Petrovic JJ (2001) Mechanical properties of meteorites. J Mater Sci 36:1579–1583CrossRefGoogle Scholar
  127. Pierce AD, Kinney WA (1976) Computational techniques for the study of infrasound propagation in the atmosphere. Georgia institute of technology Atlanta school of mechanical engineeringGoogle Scholar
  128. Pierce AD, Posey JW (1971) Theory of the excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions. Geophys J Roy Astron Soc 26(1–4):341–368Google Scholar
  129. Pierce AD, Thomas C (1969) Atmospheric correction factor for sonic-boom pressure amplitudes. J Acoust Soc Am 46:1366–1380CrossRefGoogle Scholar
  130. Pilger C, Cerana L, Le Pichon A, Borwn P (2019) Large meteoroids as global infrasound reference events. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 451–470Google Scholar
  131. Pilger C, Ceranna L, Ross JO, Le Pichon A, Mialle P, Garcés MA (2015) CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys Res Lett 42(7):2523–2531CrossRefGoogle Scholar
  132. Plooster MN (1968) Shock Waves from Line Sources, National Center for Atmospheric Research, Report TN, pp 1–93Google Scholar
  133. Plooster MN (1970) Shock waves from line sources, numerical solutions and experimental measurements. Phys Fluids 13:2665. Scholar
  134. Plotkin, K. (1989) Review of sonic boom theory. In: AAIA 12th aeronautics conference, 10–12 Apr 1989, San Antonio, TX, USAGoogle Scholar
  135. Popova O (2005) Meteoroid ablation models. Earth Moon Planet 95(1–4):303–319Google Scholar
  136. Popova O, Borovička J, Hartmann WK, Spurný P, Gnos E, Nemtchinov I, Trigo‐Rodríguez JM (2011) Very low strengths of interplanetary meteoroids and small asteroids. Meteorit Planet Sci 46(10):1525–1550CrossRefGoogle Scholar
  137. Popova OP, Jenniskens P, Emel’yanenko V, Kartashova A, Biryukov E, Khaibrakhmanov S et al (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 342(6162):1069–1073. Scholar
  138. Popova OP, Sidneva SN, Strelkov AS, Shuvalov VV (2001) Formation of disturbed area around fast meteor body. In: Meteoroids 2001 conference, vol 495, pp 237–245Google Scholar
  139. Reed JW (1972) Airblast overpressure decay at long ranges. J Geophys Res 77:1623–1629CrossRefGoogle Scholar
  140. ReVelle DO (1974) Acoustics of meteors-effects of the atmospheric temperature and wind structure on the sounds produced by meteors. PhD thesis Michigan Univ, Ann Arbor MI, USAGoogle Scholar
  141. ReVelle DO (1997) Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann N Y Acad Sci 822(1):284–302CrossRefGoogle Scholar
  142. ReVelle DO (1976) On meteor-generated infrasound. J Geophys Res 81(7):1217–1230CrossRefGoogle Scholar
  143. ReVelle DO (2001) Theoretical leonid modelling. Barbara Warmbein (ed) Proceedings of the Meteoroids 2001 Conference, 6–10 August 2001, Kiruna, Sweden. ESA SP-495. Noordwijk, ESA Publications Division, ISBN 92-9092-805-0, 2001, pp 149–154Google Scholar
  144. ReVelle DO (2005) Recent advances in bolide entry modeling: a bolide potpourri. Earth, Moon, and Planets 95(1–4):441–476Google Scholar
  145. ReVelle DO, Whitaker RW (1999) Infrasonic detection of a Leonid bolide: 1998 November 17. Meteor Planet Sci 34(6):995–1005CrossRefGoogle Scholar
  146. Richardson DC, Leinhardt ZM, Melosh HJ, Bottke WF Jr, Asphaug E (2002) Gravitational aggregates: evidence and evolution. Asteroids III 1:501–515Google Scholar
  147. Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704CrossRefGoogle Scholar
  148. Romig MF (1965) Physics of meteor entry. AIAA J 3(3):385–394Google Scholar
  149. Sachdev PL (2004) Shock waves & explosions. CRC PressGoogle Scholar
  150. Sakurai A (1964) Blast wave theory, report no. MRC-TSR-497, Wisconsin Univ-Madison Mathematics Research Center, USAGoogle Scholar
  151. Scheirich P et al (2010) The shape and rotation of asteroid 2008 TC3. Meteor Planet Sci 45(10–11):1804–1811CrossRefGoogle Scholar
  152. Sedov LI (1946) Propagation of intense blast waves. Prikl Mat Mekh 10:241–250Google Scholar
  153. Shaddad MH et al (2010) The recovery of asteroid 2008 TC3. Meteor Planet Sci 45(10–11):1557–1589CrossRefGoogle Scholar
  154. Shaw WN, Dines WH (1905) The study of the minor fluctuations of atmospheric pressure. Q J R Meteorol Soc 31(133):39–52CrossRefGoogle Scholar
  155. Shoemaker EM (1959) Impact mechanics at Meteor crater, Arizona (No 59–108). US Geological SurveyGoogle Scholar
  156. Shoemaker EM, Lowery CJ (1967) Airwaves associated with large fireballs and the frequency distribution of energy of meteoroids. Meteoritics 3:123–124Google Scholar
  157. Shuvalov VV, Popova OP, Svettsov VV, Kovalev RM, Lipnitsky YM, Meshcheryakov SA A global approach to Near-Earth object impact threat mitigation, contract # FP7-SPACE-2011-282703Google Scholar
  158. Shuvalov VV, Popova OP, Svettsov VV, Kovalev RM, Lipnitsky YM, Meshcheryakov SA (2012) NEO shield: a global approach to Near-Earth object impact threat mitigation: atmospheric trajectory analysis and ground-damage limitationGoogle Scholar
  159. Shuvalov VV, Popova OP, Svettsov VV, Trubetskaya IA, Glazachev DO (2016a) Determination of the height of the “meteoric explosion”. Sol Syst Res 50(1):1–12CrossRefGoogle Scholar
  160. Shuvalov V, Svetsov V, Popova OP, Glazachev D (2016b) Numerical model of the Chelyabinsk meteoroid as a strengthless object. Meteoroids 2016Google Scholar
  161. Silber EA (2014) Observational and theoretical investigation of cylindrical line source blast theory using meteors, Electronic Thesis and Dissertation Repository. Paper 2112.
  162. Silber EA, Brown PG (2014) Optical observations of meteors generating infrasound—I: acoustic signal identification and phenomenology. J Atmos Sol Terr Phys 119:116–128CrossRefGoogle Scholar
  163. Silber EA, Brown PG, Krzeminski Z (2015) Optical observations of meteors generating infrasound: weak shock theory and validation. J Geophys Res Planets 120(3):413–428CrossRefGoogle Scholar
  164. Silber EA, Le Pichon A, Brown P (2011) Infrasonic detection of a near-earth object impact over Indonesia on 8 October, 2009. Geophys Res Lett 38:L12201CrossRefGoogle Scholar
  165. Silber EA, ReVelle DO, Brown PG, Edwards WN (2009) An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. J Geophys Res Planets (1991–2012), 114(E8)Google Scholar
  166. Stevens JL, Divnov II, Adams DA, Murphy JR, Bourchik VN (2002) Constraints on infrasound scaling and attenuation relations from Soviet explosion data. Pure appl Geophys 159(5):1045–1062CrossRefGoogle Scholar
  167. Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115:1012. Scholar
  168. Svettsov VV (1998) Enigmas of the Sikhote Alin crater field. Sol Syst Res 32:67Google Scholar
  169. Tancredi G, Ishitsuka J, Schultz PH, Harris RS, Brown P, Revelle DO, Antier K, Pichon AL, Rosales D, Vidal E, Varela ME (2009) A meteorite crater on Earth formed on September 15, 2007: the carancas hypervelocity impact. Meteor Planet Sci 44(12):1967–1984CrossRefGoogle Scholar
  170. Taylor G (1950) The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc R Soc Lond A 201(1065):159–174CrossRefGoogle Scholar
  171. Tolstoy I (1973) Wave propagation. McGraw-Hill, New York, NY, USA, p 466Google Scholar
  172. Tonry JL (2011) An early warning system for asteroid impact. Publ Astron Soc Pac 123(899):58CrossRefGoogle Scholar
  173. Toon OB, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by the impacts of asteroids and Comets. Ann N Y Acad Sci 822 (1 near-earth ob):401. Scholar
  174. Towne DH (1967) Wave phenomena. Addison-Wesley Publications, Reading, MA, USAGoogle Scholar
  175. Tricarico P (2016) The near-Earth asteroids population from two decades of observations. arXiv:1604.06328
  176. Trigo-Rodriguez JM, Llorca J, Borovička J, Fabregat J (2003) Chemical abundances determined from meteor spectra: I Ratios of the main chemical elements. Meteor Planet Sci 38(8):1283–1294CrossRefGoogle Scholar
  177. Tsikulin MA (1970) Shock waves during the movement of large meteorites in the atmosphere, Report no NIC-Trans-3148, Naval Intelligence Command Alexandria, VA Translation Div, USAGoogle Scholar
  178. Tyson JA (2002) Large synoptic survey telescope: overview. In: Astronomical telescopes and instrumentation. International Society for Optics and Photonics, pp 10–20Google Scholar
  179. Vondrak T, Plane JMC, Broadley S, Janches D (2008) A chemical model of meteoric ablation. Atmos Chem Phys 8(23):7015–7031CrossRefGoogle Scholar
  180. Werner MW, Roellig TL, Low FJ, Rieke GH, Rieke M, Hoffmann WF, Young E, Houck JR, Brandl B, Fazio GG, Hora JL (2004) The spitzer space telescope mission. Astrophys J Suppl Ser 154(1):1CrossRefGoogle Scholar
  181. Weryk RJ, Brown PG (2013) Simultaneous radar and video meteors-II: Photometry and ionisation. Planet Space SciGoogle Scholar
  182. Weryk RJ, Brown PG, Domokos A, Edwards WN, Krzeminski Z, Nudds SH, Welch DL (2008) The Southern Ontario all-sky meteor camera network. Earth Moon Planet 102(1–4):241–246CrossRefGoogle Scholar
  183. Wetherill GW, ReVelle DO (1981) Which fireballs are meteorites? A study of the prairie network photographic meteor data. Icarus 48(2):308–328CrossRefGoogle Scholar
  184. Whipple FJW (1930) The great siberian meteor, and the waves, seismic and aerial, which it producesGoogle Scholar
  185. Whitham GB (1952) The flow pattern of a supersonic projectile. Commun Pure Appl Math 5(3):301–348CrossRefGoogle Scholar
  186. Willmore AP (1970) Electron and ion temperatures in the ionosphere. Space Sci Rev 11(5):607–670CrossRefGoogle Scholar
  187. Wright EL, Eisenhardt PR, Mainzer AK, Ressler ME, Cutri RM, Jarrett T, Kirkpatrick JD, Padgett D, McMillan RS, Skrutskie M, Stanford SA (2010) The wide-field infrared survey explorer (WISE): mission description and initial on-orbit performance. Astron J 140(6):1868CrossRefGoogle Scholar
  188. Wright WM (1983) Propagation in air of N waves produced by sparks. J Acoust Soc Am 73:1948CrossRefGoogle Scholar
  189. Wylie CC (1932) Sounds from meteors. Popular Astron 40:289Google Scholar
  190. Yuldashev P, Ollivier S, Averiyanov M, Sapozhnikov O, Khokhlova V, Blanc-Benon P (2010) Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods. J Acoust Soc Am 128:3321CrossRefGoogle Scholar
  191. Zinn J, Judd ODP, ReVelle DO (2004) Leonid meteor ablation, energy exchange, and trail morphology. Adv Space Res 33(9):1466–1474CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth, Environmental and Planetary SciencesBrown UniversityProvidenceUSA
  2. 2.Department of Physics and AstronomyUniversity of Western OntarioLondonCanada

Personalised recommendations