Skip to main content

Infrasound Monitoring as a Tool to Characterize Impacting Near-Earth Objects (NEOs)

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

Infrasound, the low-frequency sound lying below the human hearing range, has the capability to propagate over very long distances in the atmosphere due to its low attenuation. Thus, infrasound can serve as a tool for monitoring explosive sources, including extraterrestrial bodies impacting the Earth’s atmosphere. This chapter describes the theoretical background on meteor physics and bolide infrasound, as well as applications of infrasound in Near-Earth Objects (NEOs) monitoring and characterization. In addition to presenting a comprehensive list of empirical relations to estimate bolide energy release, this chapter summarizes recent case studies where infrasound served as an instrumental tool in characterizing the source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftosmis MJ, Nemec M, Mathias D, Berger M (2016) Numerical simulation of bolide entry with ground footprint prediction. In: 54th AIAA Aerospace sciences meeting. American Institute of Aeronautics and Astronautics, Reston, VA, pp 1–18. https://doi.org/10.2514/6.2016-0998

  • Anderson J (2006) Hypersonic and high-temperature gas dynamics, 2nd Ed. AIAA Education Series

    Google Scholar 

  • Barringer DM Jr (1928) A new meteor crater. In: Proceedings of the academy of natural sciences of Philadelphia, 307–311

    Google Scholar 

  • Bass HE (1972) Atmospheric absorption of sound: analytical expressions. J Acoust Soc Am 52:821–825

    Article  Google Scholar 

  • Beer T (1974) Atmospheric waves. Halsted Press, Adam Hilger, Ltd, New York, London, 315 pp

    Google Scholar 

  • Binzel RP, Reddy V, Dunn T (2015) The Near-Earth object population: connections to Comets, Main-Belt Asteroids, and Meteorites. In: Michel P et al. (ed), Asteroids IV. University of Arizona Press, pp 243–256. https://doi.org/10.2458/azu_uapress_9780816532131-ch013

    Google Scholar 

  • Bjork RL (1961) Analysis of the formation of Meteor Crater, Arizona: a preliminary report. J Geophys Res 66(10):3379–3387

    Article  Google Scholar 

  • Blanc E, Perez S, Issartel JP, Millies-Lacroix JC (1997) Detection of nuclear explosions in the atmosphere. Chocs 23–34

    Google Scholar 

  • Borovička (2008) Event reported on IAU circular 8994, central bureau of astronomical telegrams. Smithsonian Astrophysical Observatory, Cambridge, MA, 8 Oct 2008

    Google Scholar 

  • Borovička J (1993) A fireball spectrum analysis. Astron Astrophys 279:627–645

    Google Scholar 

  • Borovička J, Spurný P, Brown P (2015) Small near-Earth asteroids as a source of meteorites. Asteroids IV, 257

    Google Scholar 

  • Borovička J, Spurný P, Brown P, Wiegert P, Kalenda P, Clark D, Shrbený L (2013) The trajectory, structure and origin of the Chelyabinsk asteroidal impactor. Nature 503(7475):235–237

    Article  Google Scholar 

  • Boslough MBE, Crawford DA (2008) Low-altitude airbursts and the impact threat. Int J Impact Eng 35(12):1441–1448

    Article  Google Scholar 

  • Boslough M, Brown P, Harris A (2015) Updated population and risk assessment for airbursts from near-Earth objects (NEOs). In: 2015 IEEE aerospace conference. IEEE, pp 1–12

    Google Scholar 

  • Bowell E, Muinonen K (1994) Earth-crossing asteroids and comets: groundbased search strategies. In: T Gehrels (ed) Hazards due to Comets and Asteroids, pp 149–197

    Google Scholar 

  • Boyd ID (1998) Computation of atmospheric entry flow about a Leonid meteoroid. Earth Moon Planet 82:93–108. https://doi.org/10.1023/A:1017042404484

    Article  Google Scholar 

  • Briani G, Pupillo G, Aiello S, Pace E, Shore S, Passaro A (2007) Study of the interaction of micrometeoroids with Earth’s atmosphere. Memorie della Societa Astronomica Italiana Supplementi 11:89

    Google Scholar 

  • Bronshten VA (1964) Problems of the movements of large meteoric bodies in the atmosphere. National Aeronautics and Space Administration, TT-F-247

    Google Scholar 

  • Bronshten VA (1983) Physics of Meteoric Phenomena. 372 pp. D. Reidel, Dordrecht, Netherlands

    Chapter  Google Scholar 

  • Brown PG, Assink JD, Astiz L, Blaauw R, Boslough MB, Borovička J, 26 co-authors (2013) A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503:238–241. https://doi.org/10.1038/nature12741

    Article  Google Scholar 

  • Brown PG, Dube K, Silber E (2014) Detecting NEO impacts using the international monitoring system. In AAS/Division for planetary sciences meeting abstracts, vol 46

    Google Scholar 

  • Brown PG, Spalding RE, ReVelle DO, Tagliaferri E, Worden SP (2002) The flux of small near-Earth objects colliding with the Earth. Nature 420:294–296. https://doi.org/10.1038/nature01238

    Article  Google Scholar 

  • Brown P, McCausland PJA, Fries M, Silber E, Edwards WN, Wong DK, Weryk RJ, Fries J, Krzeminski Z (2011) The fall of the Grimsby meteorite—I: fireball dynamics and orbit from radar, video, and infrasound records. Meteor Planet Sci 46(3):339–363

    Article  Google Scholar 

  • Brown P, ReVelle DO, Silber EA, Edwards WN, Arrowsmith S, Jackson LE, Tancredi G, Eaton D (2008) Analysis of a crater‐forming meteorite impact in Peru. J Geophys Res Planets 113(E9)

    Google Scholar 

  • Brown P, Weryk RJ, Kohut S, Edwards WN, Krzeminski Z (2010) Development of an all-sky video meteor network in Southern Ontario, Canada the ASGARD system. WGN J Int Meteor Organ 38:25–30

    Google Scholar 

  • Brown P, Wiegert P, Clark D, Tagliaferri E (2016) Orbital and physical characteristics of meter-scale impactors from airburst observations. Icarus 266:96–111

    Article  Google Scholar 

  • Brown PG, Edwards WN, ReVelle DO, Spurny P (2007) Acoustic analysis of shock production by very high-altitude meteors—I: infrasonic observations, dynamics and luminosity. J Atmos Solar Terr Phys 69:600–620. https://doi.org/10.1016/j.jastp.2006.10.011

    Article  Google Scholar 

  • Buratti BJ, Johnson LL (2003) Identification of the lunar flash of 1953 with a fresh crater on the Moon’s surface. Icarus 161(1):192–197

    Article  Google Scholar 

  • Campbell-Brown MD, Koschny D (2004) Model of the ablation of faint meteors. Astron Astrophys-Berl Then Les Ulis 418(2):751–758

    Article  Google Scholar 

  • Carlson HW, Maglieri DJ (1972) Review of sonic-boom generation theory and prediction methods. J Acoust Soc Am 51:675

    Article  Google Scholar 

  • Ceplecha Z (1994) Impacts of meteoroids larger than 1 m into the Earth’s Atmosphere. Astron Astrophys 286:967–970

    Google Scholar 

  • Ceplecha Z, Revelle DO (2005) Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteor Planet Sci 40(1):35–54. https://doi.org/10.1111/j.1945-5100.2005.tb00363.x

    Article  Google Scholar 

  • Ceplecha Z, Borovička J, Elford WG, ReVelle DO, Hawkes RL, Porubčan V, Šimek M (1998) Meteor phenomena and bodies. Space Sci Rev 84(3–4):327–471

    Article  Google Scholar 

  • Ceplecha Z, Borovička J, Spurný P (2000) Dynamical behavior of meteoroids in the atmosphere derived from very precise photographic records. Astron Astrophys 357:1115–1122

    Google Scholar 

  • Ceplecha Z, Spurny P, Borovička J, Keclikova J (1993) Atmospheric fragmentation of meteoriods. Astron Astrophys 279:615–626

    Google Scholar 

  • Chapman CR, Morrison D (1994) Impacts on the Earth by asteroids and comets: assessing the hazard. Nature 367(6458):33–40

    Article  Google Scholar 

  • Chesley SR, Farnocchia D, Brown PG, Chodas PW (2015) Orbit estimation for late warning asteroid impacts: The case of 2014 AA. In: Aerospace conference, 2015 IEEE. IEEE, pp 1–8

    Google Scholar 

  • Chesley SR, Spahr TB (2004) Earth-impactors: Orbital characteristics and warning times. In: Belton MJS, Morgan TH, Samarashinha NH, Yeomans DK (eds) Mitigation of hazardous Comets and Asteroids. Cambridge University Press, Cambridge, pp 22–37

    Chapter  Google Scholar 

  • Christie DR, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 29–75. https://doi.org/10.1007/978-1-4020-9508-5_2

    Chapter  Google Scholar 

  • Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361(6407):40–44

    Article  Google Scholar 

  • Clauter DA, Blandford RR (1998) Capability modeling of the proposed international monitoring system 60-station infrasonic network. Technical report LAUR-98-56. Los Alamos National Labs, Los Alamos, New Mexico

    Google Scholar 

  • Collins GS, Melosh HJ, Marcus RA (2005) Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteor Planet Sci 40(6):817–840

    Article  Google Scholar 

  • Cook RK, Bedard AJ Jr (1972) On the measurement of Infrasound Q. J R Astron Soc 67:5–11

    Google Scholar 

  • Cotten D, Donn WL (1971) Sound from Apollo rockets in space. Science 171(3971):565–567

    Article  Google Scholar 

  • de Groot-Hedlin CD, Hedlin MA, Drob DP (2010) Atmospheric variability and infrasound monitoring. In: Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 475–507

    Google Scholar 

  • de Groot-Hedlin C, Hedlin M (2014) USArray recordings of infrasound generated by the Chelyabinsk Meteor and other, smaller bolides. In: EGU general assembly conference abstracts, vol 16, p 8823

    Google Scholar 

  • Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26(1–4):111–133

    Article  Google Scholar 

  • Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res Atmos (1984–2012), 108(D21)

    Google Scholar 

  • DuMond JW, Cohen ER, Panofsky WKH, Deeds E (1946) A determination of the wave forms and laws of propagation and dissipation of ballistic shock waves. J Acoust Soc Am 18:97

    Article  Google Scholar 

  • Edwards WN (2007) Meteoroid kinetic energy estimation using infrasonic and seismic observations of meteor generated sound. PhD. Thesis, University of Western Ontario, Department of Earth Sciences

    Google Scholar 

  • Edwards WN, Brown PG, Weryk RJ, ReVelle DO (2008) Infrasonic observations of meteoroids: preliminary results from a coordinated optical-radar-infrasound observing campaign. Earth, Moon, and Planets 102(1–4):221–229. https://doi.org/10.1007/s11038-007-9154-6

    Article  Google Scholar 

  • Edwards WN (2010) Meteor generated infrasound: theory and observation. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 361–414. https://doi.org/10.1007/978-1-4020-9508-5_12

    Chapter  Google Scholar 

  • Emanuel G (2000) Theory of shock waves, in handbook of shock waves. In: Ben-Dor G, Igra O, Elperin T (eds) Three volume set. Academic Press

    Google Scholar 

  • Ens TA, Brown PG, Edwards WN, Silber EA (2012) Infrasound production by bolides: A global statistical study. J Atmos Solar Terr Phys 80:208–229. https://doi.org/10.1016/j.jastp.2012.01.018

    Article  Google Scholar 

  • Evans LB, Bass HE, Sutherland LC (1972) Atmospheric absorption of sound: theoretical predictions. J Acoust Soc Am 51:1565

    Article  Google Scholar 

  • Evers LG, Haak HW (2003) Tracing a meteoric trajectory with infrasound. Geophy Res Lett 30(24):1–4

    Google Scholar 

  • Evers LG, Haak HW (2010) The characteristics of infrasound, its propagation and some early history. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 3–27

    Chapter  Google Scholar 

  • Farnocchia D, Chesley SR, Brown PG, Chodas PW (2016) The trajectory and atmospheric impact of asteroid 2014 AA. Icarus 274:327–333

    Article  Google Scholar 

  • Few AA (1969) Power spectrum of thunder. J Geophys Res 74:6926–6934. https://doi.org/10.1029/JC074i028p06926

    Article  Google Scholar 

  • Gardner CS, Hostetler CA, Franke SJ (1993) Gravity wave models for the horizontal wave number spectra of atmospheric velocity and density fluctuations. J Geophys Res 98(D1):1035–1049

    Article  Google Scholar 

  • Georges TM, Beasley WH (1977) Refraction of infrasound by upper-atmospheric winds. J Acoust Soc Am 61:28

    Article  Google Scholar 

  • Glasstone S, Dolan PJ (1977) The Effects of Nuclear Weapons. United States Department of Defense and Department of Energy, Washington, DC, USA

    Google Scholar 

  • Golden P, Herrin ET, Negraru PT (2007) Infrasound in the zone of silence. In: Proceedings of the European geophysical union, Vienna, Apr 2007

    Google Scholar 

  • Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res: Atmos 115(D18)

    Google Scholar 

  • Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185(2):890–910

    Article  Google Scholar 

  • Groves GV (1963) Initial expansion to ambient pressure of chemical explosive releases in the upper atmosphere. J Geophys Res 68(10):3033–3047

    Article  Google Scholar 

  • Halliday I, Blackwell AT, Griffin A (1978) The Innisfree meteorite and the Canadian camera network. R Astron Soc Can J 72:15–39. http://adsabs.harvard.edu/full/1978JRASC..72…15H

  • Harris A (2008) What spaceguard did. Nature 453(7199):1178–1179

    Article  Google Scholar 

  • Harris AW, Boslough M, Chapman CR, Drube L, Michel P (2015) Asteroid impacts and modern civilization: can we prevent a catastrophe?. Asteroids IV 835–854

    Google Scholar 

  • Harris AW, D’Abramo G (2015) The population of near-Earth asteroids. Icarus 257:302–312

    Article  Google Scholar 

  • Hayes W, Probstein RF (1959) Hypersonic flow theory, vol 5. Elsevier

    Google Scholar 

  • Haynes CP, Millet C (2013) A sensitivity analysis of meteoric infrasound. J Geophys Res Planets 118(10):2073–2082. https://doi.org/10.1002/jgre.20116

    Article  Google Scholar 

  • Henneton M, Gainville O, Coulouvrat F (2015) Numerical simulation of sonic boom from hypersonic meteoroids. AIAA J 53(9):2560–2570. https://doi.org/10.2514/1.J053421

    Article  Google Scholar 

  • Herrin ET, Golden PW, Negraru PT, McKenna MH (2007) Infrasound in the zone of silence, proceedings of the 29th monitoring research review: ground-based nuclear explosion monitoring technologies. Denver, CO, pp 25–27, Sep 2007

    Google Scholar 

  • Hills JG, Goda MP (1998) Damage from the impacts of small asteroids. Planet Space Science 46(2–3):219–229

    Article  Google Scholar 

  • Hunt JN, Palmer R, Penney W (1960) Atmospheric waves caused by large explosions. Philos Trans R Soc Lond A 252(1011):275–315

    Article  Google Scholar 

  • Ivezic Z, Tyson JA, Abel B, Acosta E, Allsman R, AlSayyad Y, Anderson SF et al (2008) LSST: from science drivers to reference design and anticipated data products. arXiv:0805.2366

  • Jedicke R, Granvik M, Micheli M, Ryan E, Spahr T, Yeomans DK (2015) Surveys, astrometric follow-up and population statistics. In: Michel P et al (ed) Asteroids IV. University of Arizona Press, pp 795–813. https://doi.org/10.2458/azu_uapress_9780816532131-ch040

    Google Scholar 

  • Jenniskens P et al (2009) The impact and recovery of asteroid 2008 TC3. Nature 458(7237):485–488

    Article  Google Scholar 

  • Jenniskens P, Shaddad MH (2010) 2008 TC3: the small asteroid with an impact. Meteor Planet Sci 45(10–11):1553–1556

    Article  Google Scholar 

  • Jones DL, Goyer GG, Plooster MN (1968) Shock wave from a lightning discharge. J Geophys Res 73:3121–3127

    Article  Google Scholar 

  • Keay CS (1980) Anomalous sounds from the entry of meteor fireballs. Science 210(4465):11–15

    Article  Google Scholar 

  • Keay CSL, Ceplecha Z (1994) Rate of observation of electrophonic meteor fireballs. J Geophys Res Planets (1991–2012), 99(E6):13163–13165

    Article  Google Scholar 

  • Kinney GF, Graham KJ (1985) Explosive shocks in air, vol 282. Springer, Berlin, New York, p 1

    Book  Google Scholar 

  • Kowalski RA et al (2008) Minor Planet Electron Circ 2008-T50

    Google Scholar 

  • Kowalski RA et al (2014) Minor Planet Electron Circ 2014-A02

    Google Scholar 

  • Kozubal MJ, Gasdia FW, Dantowitz RF, Scheirich P, Harris AW (2011) Photometric observations of Earth-impacting asteroid 2008 TC3. Meteor Planet Sci 46(4):534–542

    Article  Google Scholar 

  • Kraemer DR (1977) Infrasound from accurately measured meteor trails, PhD thesis Michigan Univ, Ann Arbor, MI, USA

    Google Scholar 

  • Krehl P (2001) History of shock waves. In: Ben-Dor G et al (ed) Handbook of shock waves, vol 1. Academic Press, New York, pp 1–142

    Google Scholar 

  • Krehl PO (2009) History of shock waves, explosions and impact: a chronological and biographical reference. Springer

    Google Scholar 

  • Kring DA (2007) Guidebook to the geology of barringer meteorite crater, arizona (aka Meteor Crater). Lunar and Planetary Institute, Houston

    Google Scholar 

  • Krinov EL (1963) The Tunguska and Sikhote-Alin meteorites. Moon Meteor Comets 1:208

    Google Scholar 

  • Krinov EL (1966) Giant meteorites. Translated from the Russian by JS Romankiewicz. Translation edited by MM Beynon, 1. Oxford, New York, Pergamon Press [1966][1st English ed]

    Google Scholar 

  • Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 511–540

    Chapter  Google Scholar 

  • Landau LD (1945) On shock waves at a large distance from the place of their origin. Sov J Phys 9:496

    Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J, Tailpied D (2019) Modeling the detection capability of the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 593–604

    Google Scholar 

  • Le Pichon A, Antier K, Cansi Y, Hernandez B, Minaya E, Burgoa B, Drob D, Evers LG, Vaubaillon J (2008) Evidence for a meteoritic origin of the September 15, 2007, Carancas crater. Meteor Planet Sc 43(11):1797–1809

    Article  Google Scholar 

  • Lin SC (1954) Cylindrical shock waves produced by instantaneous energy release. J Appl Phys 25:54–57. https://doi.org/10.1063/1.1721520

    Article  Google Scholar 

  • Maglieri DJ, Plotkin KJ (1991) Sonic boom. In Aeroacoustics of flight vehicles: theory and practice. Volume 1: noise sources, vol 1, pp 519–561

    Google Scholar 

  • Malin MC, Edgett KS, Posiolova LV, McColley SM, Dobrea EZN (2006) Present-day impact cratering rate and contemporary gully activity on Mars. Science 314(5805):1573–1577

    Article  Google Scholar 

  • Marsh DR, Janches D, Feng W, Plane J (2013) A global model of meteoric sodium. J Geophys Res Atmos 118(19):11–442

    Article  Google Scholar 

  • Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62

    Google Scholar 

  • Mathias DL, Robertson DK, Aftosmis MJ (2015) Sensitivity of ground damage predictions to meteoroid breakup modeling assumptions, IAA-PDC-15-05-04. In: 4th IAA planetary defense conference—PDC 2015, 13–17 Apr 2015, Frascati, Roma, Italy

    Google Scholar 

  • McCrosky RE, Boeschenstein H (1965) The prairie meteorite network. Smithsonian Astrophysical Observatory special report 173:1–26

    Google Scholar 

  • McIntosh BA, Watson MD, ReVelle DO (1976) Infrasound from a radar-observed meteor. Can J Phys 54(6):655–662

    Article  Google Scholar 

  • McKinley DWR (1961) Meteor science and engineering. McGraw-Hill Inc., New York, NY

    Google Scholar 

  • McKisic JM (1997) Infrasound and the infrasonic monitoring of atmospheric nuclear explosions: a literature review. Final report PL-TR-97-2123. Department of Energy and Phillips Laboratory, National Technical Information Service, p 310

    Google Scholar 

  • Mersenne M (1636) Harmonie universelle; translate Chapman R: (1957). The books on instruments. Nijhoff, The Hague

    Google Scholar 

  • Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248

    Google Scholar 

  • Millet C, Haynes CP (2010) Stochastic model approach of meteor-generated infrasound. AIAA Paper, 7999

    Google Scholar 

  • Morrison D (1992) The spaceguard survey: report of the NASA international Near-Earth-Object detection workshop

    Google Scholar 

  • Morse PM, Ingard KU (1968) Theoretical acoustics. McGraw-Hill, New York

    Google Scholar 

  • Murdin P (2000) Sikhote Alin Meteorite. Encycl Astron Astrophys 1:5379

    Google Scholar 

  • Mutschlecner JP, Whitaker RW (2010) Some atmospheric effects on infrasound signal amplitudes. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 455–474

    Chapter  Google Scholar 

  • Mutschlecner JP, Whitaker R, Auer LH (1999) An empirical study of infrasonic propagation. Technical report LA-13620-MS. Los Alamos National Lab, Los Alamos, NM

    Google Scholar 

  • Needham CE (2010) Blast waves, shock wave and high pressure phenomena. Springer, pp 339

    Google Scholar 

  • Nemtchinov IV, Popova OP (1997) An analysis of the 1947 Sikhote-Alin event and a comparison with the phenomenon of February 1, 1994. Sol Syst Res 31:408

    Google Scholar 

  • Nemtchinov IV, Shuvalov VV, Artem’eva NA, Ivanov BA, Kosarev IB, Trubetskaya IA (1998) Light flashes caused by meteoroid impacts on the lunar surface. Sol Syst Res 32:99

    Google Scholar 

  • Norris D, Gibson R (2001) InfraMAP propagation modeling enhancements and the study of recent bolide events. In: 23rd Seismic research review: worldwide monitoring of nuclear explosions. Jackson Hole, Wyoming

    Google Scholar 

  • Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. Infrasound monitoring for atmospheric studies. Springer, Netherlands, pp 541–573

    Chapter  Google Scholar 

  • O’Keefe JD, Ahrens TJ (1982) Impact mechanics of the Cretaceous-Tertiary extinction bolide. Nature 298(5870):123–127

    Article  Google Scholar 

  • Öpik EJ (1958) Physics of meteor flight in the atmosphere. Interscience Publishers, New York 1958:1

    Google Scholar 

  • Ortiz JL, Quesada JA, Aceituno J, Aceituno FJ, Rubio LB (2002) Observation and interpretation of Leonid impact flashes on the Moon in 2001. Astrophys J 576(1):567

    Article  Google Scholar 

  • Pan YS, Sotomayer WA (1972) Sonic boom of hypersonic vehicles. AIAA J 10:550–551

    Google Scholar 

  • Peitgen H, Saupe D (eds) (1998) The science of fractal images. Springer

    Google Scholar 

  • Petrovic JJ (2001) Mechanical properties of meteorites. J Mater Sci 36:1579–1583

    Article  Google Scholar 

  • Pierce AD, Kinney WA (1976) Computational techniques for the study of infrasound propagation in the atmosphere. Georgia institute of technology Atlanta school of mechanical engineering

    Google Scholar 

  • Pierce AD, Posey JW (1971) Theory of the excitation and propagation of Lamb’s atmospheric edge mode from nuclear explosions. Geophys J Roy Astron Soc 26(1–4):341–368

    Google Scholar 

  • Pierce AD, Thomas C (1969) Atmospheric correction factor for sonic-boom pressure amplitudes. J Acoust Soc Am 46:1366–1380

    Article  Google Scholar 

  • Pilger C, Cerana L, Le Pichon A, Borwn P (2019) Large meteoroids as global infrasound reference events. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 451–470

    Google Scholar 

  • Pilger C, Ceranna L, Ross JO, Le Pichon A, Mialle P, Garcés MA (2015) CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys Res Lett 42(7):2523–2531

    Article  Google Scholar 

  • Plooster MN (1968) Shock Waves from Line Sources, National Center for Atmospheric Research, Report TN, pp 1–93

    Google Scholar 

  • Plooster MN (1970) Shock waves from line sources, numerical solutions and experimental measurements. Phys Fluids 13:2665. https://doi.org/10.1063/1.1692848

    Article  Google Scholar 

  • Plotkin, K. (1989) Review of sonic boom theory. In: AAIA 12th aeronautics conference, 10–12 Apr 1989, San Antonio, TX, USA

    Google Scholar 

  • Popova O (2005) Meteoroid ablation models. Earth Moon Planet 95(1–4):303–319

    Google Scholar 

  • Popova O, Borovička J, Hartmann WK, Spurný P, Gnos E, Nemtchinov I, Trigo‐Rodríguez JM (2011) Very low strengths of interplanetary meteoroids and small asteroids. Meteorit Planet Sci 46(10):1525–1550

    Article  Google Scholar 

  • Popova OP, Jenniskens P, Emel’yanenko V, Kartashova A, Biryukov E, Khaibrakhmanov S et al (2013) Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science 342(6162):1069–1073. https://doi.org/10.1126/science.1242642

    Article  Google Scholar 

  • Popova OP, Sidneva SN, Strelkov AS, Shuvalov VV (2001) Formation of disturbed area around fast meteor body. In: Meteoroids 2001 conference, vol 495, pp 237–245

    Google Scholar 

  • Reed JW (1972) Airblast overpressure decay at long ranges. J Geophys Res 77:1623–1629

    Article  Google Scholar 

  • ReVelle DO (1974) Acoustics of meteors-effects of the atmospheric temperature and wind structure on the sounds produced by meteors. PhD thesis Michigan Univ, Ann Arbor MI, USA

    Google Scholar 

  • ReVelle DO (1997) Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Ann N Y Acad Sci 822(1):284–302

    Article  Google Scholar 

  • ReVelle DO (1976) On meteor-generated infrasound. J Geophys Res 81(7):1217–1230

    Article  Google Scholar 

  • ReVelle DO (2001) Theoretical leonid modelling. Barbara Warmbein (ed) Proceedings of the Meteoroids 2001 Conference, 6–10 August 2001, Kiruna, Sweden. ESA SP-495. Noordwijk, ESA Publications Division, ISBN 92-9092-805-0, 2001, pp 149–154

    Google Scholar 

  • ReVelle DO (2005) Recent advances in bolide entry modeling: a bolide potpourri. Earth, Moon, and Planets 95(1–4):441–476

    Google Scholar 

  • ReVelle DO, Whitaker RW (1999) Infrasonic detection of a Leonid bolide: 1998 November 17. Meteor Planet Sci 34(6):995–1005

    Article  Google Scholar 

  • Richardson DC, Leinhardt ZM, Melosh HJ, Bottke WF Jr, Asphaug E (2002) Gravitational aggregates: evidence and evolution. Asteroids III 1:501–515

    Google Scholar 

  • Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704

    Article  Google Scholar 

  • Romig MF (1965) Physics of meteor entry. AIAA J 3(3):385–394

    Google Scholar 

  • Sachdev PL (2004) Shock waves & explosions. CRC Press

    Google Scholar 

  • Sakurai A (1964) Blast wave theory, report no. MRC-TSR-497, Wisconsin Univ-Madison Mathematics Research Center, USA

    Google Scholar 

  • Scheirich P et al (2010) The shape and rotation of asteroid 2008 TC3. Meteor Planet Sci 45(10–11):1804–1811

    Article  Google Scholar 

  • Sedov LI (1946) Propagation of intense blast waves. Prikl Mat Mekh 10:241–250

    Google Scholar 

  • Shaddad MH et al (2010) The recovery of asteroid 2008 TC3. Meteor Planet Sci 45(10–11):1557–1589

    Article  Google Scholar 

  • Shaw WN, Dines WH (1905) The study of the minor fluctuations of atmospheric pressure. Q J R Meteorol Soc 31(133):39–52

    Article  Google Scholar 

  • Shoemaker EM (1959) Impact mechanics at Meteor crater, Arizona (No 59–108). US Geological Survey

    Google Scholar 

  • Shoemaker EM, Lowery CJ (1967) Airwaves associated with large fireballs and the frequency distribution of energy of meteoroids. Meteoritics 3:123–124

    Google Scholar 

  • Shuvalov VV, Popova OP, Svettsov VV, Kovalev RM, Lipnitsky YM, Meshcheryakov SA A global approach to Near-Earth object impact threat mitigation, contract # FP7-SPACE-2011-282703

    Google Scholar 

  • Shuvalov VV, Popova OP, Svettsov VV, Kovalev RM, Lipnitsky YM, Meshcheryakov SA (2012) NEO shield: a global approach to Near-Earth object impact threat mitigation: atmospheric trajectory analysis and ground-damage limitation

    Google Scholar 

  • Shuvalov VV, Popova OP, Svettsov VV, Trubetskaya IA, Glazachev DO (2016a) Determination of the height of the “meteoric explosion”. Sol Syst Res 50(1):1–12

    Article  Google Scholar 

  • Shuvalov V, Svetsov V, Popova OP, Glazachev D (2016b) Numerical model of the Chelyabinsk meteoroid as a strengthless object. Meteoroids 2016

    Google Scholar 

  • Silber EA (2014) Observational and theoretical investigation of cylindrical line source blast theory using meteors, Electronic Thesis and Dissertation Repository. Paper 2112. http://www.ir.lib.uwo.ca/etd/2112

  • Silber EA, Brown PG (2014) Optical observations of meteors generating infrasound—I: acoustic signal identification and phenomenology. J Atmos Sol Terr Phys 119:116–128

    Article  Google Scholar 

  • Silber EA, Brown PG, Krzeminski Z (2015) Optical observations of meteors generating infrasound: weak shock theory and validation. J Geophys Res Planets 120(3):413–428

    Article  Google Scholar 

  • Silber EA, Le Pichon A, Brown P (2011) Infrasonic detection of a near-earth object impact over Indonesia on 8 October, 2009. Geophys Res Lett 38:L12201

    Article  Google Scholar 

  • Silber EA, ReVelle DO, Brown PG, Edwards WN (2009) An estimate of the terrestrial influx of large meteoroids from infrasonic measurements. J Geophys Res Planets (1991–2012), 114(E8)

    Google Scholar 

  • Stevens JL, Divnov II, Adams DA, Murphy JR, Bourchik VN (2002) Constraints on infrasound scaling and attenuation relations from Soviet explosion data. Pure appl Geophys 159(5):1045–1062

    Article  Google Scholar 

  • Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115:1012. https://doi.org/10.1121/1.1631937

    Article  Google Scholar 

  • Svettsov VV (1998) Enigmas of the Sikhote Alin crater field. Sol Syst Res 32:67

    Google Scholar 

  • Tancredi G, Ishitsuka J, Schultz PH, Harris RS, Brown P, Revelle DO, Antier K, Pichon AL, Rosales D, Vidal E, Varela ME (2009) A meteorite crater on Earth formed on September 15, 2007: the carancas hypervelocity impact. Meteor Planet Sci 44(12):1967–1984

    Article  Google Scholar 

  • Taylor G (1950) The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc R Soc Lond A 201(1065):159–174

    Article  Google Scholar 

  • Tolstoy I (1973) Wave propagation. McGraw-Hill, New York, NY, USA, p 466

    Google Scholar 

  • Tonry JL (2011) An early warning system for asteroid impact. Publ Astron Soc Pac 123(899):58

    Article  Google Scholar 

  • Toon OB, Zahnle K, Morrison D, Turco RP, Covey C (1997) Environmental perturbations caused by the impacts of asteroids and Comets. Ann N Y Acad Sci 822 (1 near-earth ob):401. https://doi.org/10.1111/j.1749-6632.1997.tb48357.x

    Article  Google Scholar 

  • Towne DH (1967) Wave phenomena. Addison-Wesley Publications, Reading, MA, USA

    Google Scholar 

  • Tricarico P (2016) The near-Earth asteroids population from two decades of observations. arXiv:1604.06328

  • Trigo-Rodriguez JM, Llorca J, Borovička J, Fabregat J (2003) Chemical abundances determined from meteor spectra: I Ratios of the main chemical elements. Meteor Planet Sci 38(8):1283–1294

    Article  Google Scholar 

  • Tsikulin MA (1970) Shock waves during the movement of large meteorites in the atmosphere, Report no NIC-Trans-3148, Naval Intelligence Command Alexandria, VA Translation Div, USA

    Google Scholar 

  • Tyson JA (2002) Large synoptic survey telescope: overview. In: Astronomical telescopes and instrumentation. International Society for Optics and Photonics, pp 10–20

    Google Scholar 

  • Vondrak T, Plane JMC, Broadley S, Janches D (2008) A chemical model of meteoric ablation. Atmos Chem Phys 8(23):7015–7031

    Article  Google Scholar 

  • Werner MW, Roellig TL, Low FJ, Rieke GH, Rieke M, Hoffmann WF, Young E, Houck JR, Brandl B, Fazio GG, Hora JL (2004) The spitzer space telescope mission. Astrophys J Suppl Ser 154(1):1

    Article  Google Scholar 

  • Weryk RJ, Brown PG (2013) Simultaneous radar and video meteors-II: Photometry and ionisation. Planet Space Sci

    Google Scholar 

  • Weryk RJ, Brown PG, Domokos A, Edwards WN, Krzeminski Z, Nudds SH, Welch DL (2008) The Southern Ontario all-sky meteor camera network. Earth Moon Planet 102(1–4):241–246

    Article  Google Scholar 

  • Wetherill GW, ReVelle DO (1981) Which fireballs are meteorites? A study of the prairie network photographic meteor data. Icarus 48(2):308–328

    Article  Google Scholar 

  • Whipple FJW (1930) The great siberian meteor, and the waves, seismic and aerial, which it produces

    Google Scholar 

  • Whitham GB (1952) The flow pattern of a supersonic projectile. Commun Pure Appl Math 5(3):301–348

    Article  Google Scholar 

  • Willmore AP (1970) Electron and ion temperatures in the ionosphere. Space Sci Rev 11(5):607–670

    Article  Google Scholar 

  • Wright EL, Eisenhardt PR, Mainzer AK, Ressler ME, Cutri RM, Jarrett T, Kirkpatrick JD, Padgett D, McMillan RS, Skrutskie M, Stanford SA (2010) The wide-field infrared survey explorer (WISE): mission description and initial on-orbit performance. Astron J 140(6):1868

    Article  Google Scholar 

  • Wright WM (1983) Propagation in air of N waves produced by sparks. J Acoust Soc Am 73:1948

    Article  Google Scholar 

  • Wylie CC (1932) Sounds from meteors. Popular Astron 40:289

    Google Scholar 

  • Yuldashev P, Ollivier S, Averiyanov M, Sapozhnikov O, Khokhlova V, Blanc-Benon P (2010) Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods. J Acoust Soc Am 128:3321

    Article  Google Scholar 

  • Zinn J, Judd ODP, ReVelle DO (2004) Leonid meteor ablation, energy exchange, and trail morphology. Adv Space Res 33(9):1466–1474

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Silber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silber, E., Brown, P. (2019). Infrasound Monitoring as a Tool to Characterize Impacting Near-Earth Objects (NEOs). In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_31

Download citation

Publish with us

Policies and ethics