Infrasound for Detection, Localization, and Geometrical Reconstruction of Lightning Flashes

  • Thomas FargesEmail author
  • François Coulouvrat
  • Louis-Jonardan Gallin
  • Régis Marchiano


In the context of the infrasound network of the International Monitoring System of CTBT, infrasounds and low- frequency sounds are reviewed as a method to characterize lightning flashes in a complementary way to electromagnetic observations. The physics of lightning discharges is briefly recalled, in relation with thunder characteristics and mechanisms of generation. The possibilities and limitations of following storms at various distances by means of remote acoustic detection of lightning flashes is discussed. Influence of distance, wind and ambient noise is examined. The three-dimensional reconstruction of lightning flashes is illustrated by several examples from a recent 2012 observation campaign in the French Mediterranean region. Comparison with outputs from a high-resolution electromagnetic lightning mapping array delineates the performances of acoustical reconstruction of individual lightning flashes for both intra-cloud or cloud-to-ground discharges. Analysis of a significant number of discharges allows to perform a statistical comparison of the two approaches. Special attention is brought to the lower parts of cloud-to-ground discharges. Opportunities for further investigations are finally outlined.



The SOP1 was funded by grants MISTRALS/HYMEX and ANR-11-BS56-0005 IODA-MED. The authors acknowledge Meteo-France and the HyMeX program for supplying the data, sponsored by grants MISTRALS/HyMeX and ANR-11-BS56-0005 IODA-MED project. Present results have been obtained within the frame of the LETMA (Laboratoire ETudes et Modélisation Acoustique), Contractual Research Laboratory between CEA, CNRS, Ecole Centrale Lyon, C-Innov, and Université Pierre et Marie Curie.


  1. Arechiga RO, Johnson JB, Edens HE, Thomas RJ, Rison W (2011) Acoustic localization of triggered lightning. J Geophys Res 116(D09103):1–11Google Scholar
  2. Assink JD, Evers LG, Holleman I, Paulssen H (2008) Characterization of infrasound from lightning. Geophys Res Lett 35(L15802):1–5Google Scholar
  3. Balachandran NK (1979) Infrasonic signals from thunder. J Geophys Res 84:1735–1745CrossRefGoogle Scholar
  4. Betz HD, Schumann U, Laroche P (2009) Lightning: principles, instruments and applications. Springer, NetherlandsGoogle Scholar
  5. Brachet N, Brown D, Le Bras R, Cansi Y, Mialle P, Coyne J (2010) Monitoring the Earths atmosphere with the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, pp 77–118. Springer editionsGoogle Scholar
  6. Brode HL (1956) The blast wave in air resulting from a high temperature, high pressure sphere of air. Rand Corp. Res. Mem. RM-1825-AECGoogle Scholar
  7. Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. method. Geophys Res Lett 22:1021–1024CrossRefGoogle Scholar
  8. Cansi Y, Le Pichon A (2009) Infrasound event detection using the progressive multi-channel correlation algorithm. In: Havelock D, Kuwano S, Vorländer M (eds) Handbook of signal processing in acoustics. Springer, New York, pp 1425–1435Google Scholar
  9. Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, pp 29–75. Springer editionsGoogle Scholar
  10. Cecil DJ, Buechler DE, Blakeslee RJ (2014) Gridded lightning climatology from TRMM-LIS and OTD: dataset description. Atmos Res 135–136:404–414. Scholar
  11. Cummins KL, Murphy MJ (2009) An overview of lightning locating systems: history, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans Electromagn Compat 51:499–518CrossRefGoogle Scholar
  12. da Silva CL, Pasko VP (2014) Infrasonic acoustic waves generated by fast air heating in sprite cores. Geophys Res Lett 41:17891795. Scholar
  13. Defer E, Pinty JP, Coquillat S, Martin J-M, Prieur S, Soula S, Richard E, Rison W, Krehbiel P, Thomas R, Rodeheffer D, Vergeiner C, Malaterre F, Pedeboy S, Schulz W, Farges T, Gallin L-J, Ortéga P, Ribaud J-F, Anderson G, Betz HD, Meneux B, Kotroni V, Lagouvardos K, Roos S, Ducrocq V, Roussot O, Labatut L, Molinié G (2015) An overview of the lightning and atmospheric electricity observations collected in southern France during the HYdrological cycle in Mediterranean EXperiment (HyMeX), Special Observation Period 1. Atmos Meas Tech 8:649–669CrossRefGoogle Scholar
  14. de Larquier S, Pasko VP (2010) Mechanism of invertedchirp infrasonic radiation from sprites. Geophys Res Lett 37:L24803. Scholar
  15. Depasse P (1994) Lightning acoustic signature. J Geophys Res 99:25933–25940CrossRefGoogle Scholar
  16. Dessler AJ (1973) Infrasonic thunder. J Geophys Res 78:1889–1896CrossRefGoogle Scholar
  17. Drob D (2019) Meteorology, climatology, and upper atmospheric composition for infrasound propagation modeling. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 485–508Google Scholar
  18. Farges T, Blanc E, Le Pichon A, Neubert T, Allin TH (2005) Identification of infrasound produced by sprites during the Sprite, (2003) campaign. Geophys Res Lett 32:L01813.
  19. Farges T, Blanc E (2010) Characteristics of infrasound from lightning and sprites near thunderstorm areas. J Geophys Res 115:A00E31, 1–17, Scholar
  20. Farges T, Le Pichon A, Ceranna L, Diawara A (2016) Infrasound from lightning measured in Ivory Coast from 2004 to 2014. Geophys Res Abs 18:EGU2016-4519Google Scholar
  21. Few AA (1969) Power spectrum of thunder. J Geophys Res 74:6926–6934CrossRefGoogle Scholar
  22. Few AA (1970) Lightning channel reconstruction from thunder measurements. J Geophys Res 75:7517–7523CrossRefGoogle Scholar
  23. Few AA (1985) The production of lightning-associated infrasonic acoustic sources in thunderclouds. J Geophys Res 90:6175–6180CrossRefGoogle Scholar
  24. Few AA (1995) Acoustic radiations from lightning. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 2. CRC Press, pp 1–31Google Scholar
  25. Few AA, Teer TL (1974) The accuracy of acoustic reconstructions of lightning channels. J Geophys Res 79:5007–5011CrossRefGoogle Scholar
  26. Fleagle RG (1949) The audibility of thunder. J Acoust Soc Am 21:411–412CrossRefGoogle Scholar
  27. Fourrié N, Bresson E, Nuret M, Jany C, Brousseau P, Doerenbecher A, Nuissier O, Sevault E, Kreitz M, Bénichou H, Amodeï M, Pouponneau F (2015) AROME-WMED: a real-time mesoscale model designed for the HyMeX special observation periods. Geosci Model Dev Discuss 8:18011856CrossRefGoogle Scholar
  28. Gallin L-J, Rénier M, Gaudard E, Farges T, Marchiano R, Coulouvrat F (2014) One-way approximation for the simulation of weak shock wave propagation in atmospheric flows. J Acoust Soc Am 135:2559–2570. Scholar
  29. Gallin L-J, Farges T, Marchiano R, Coulouvrat F, Defer E, Rison W, Schulz W, Nuret M (2016) Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array. J Geophys Res 121;3929-3953. Scholar
  30. Holmes CR, Brook M, Krehbiel P, McCrory R (1971) On the power spectrum and mechanism of thunder. J Geophys Res 76:2106–2115CrossRefGoogle Scholar
  31. Jones DL, Goyer GG, Plooster MN (1968) Shock wave from a lightning discharge. J Geophys Res 73:3121–3127CrossRefGoogle Scholar
  32. Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40:3732–3737. Scholar
  33. MacGorman DR, Few AA, Teer TL (1981) Layered lightning activity. J Geophys Res 86:9900–9910CrossRefGoogle Scholar
  34. Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  35. Matoza RS, Landès M, Le Pichon A, Ceranna L, Brown D (2013) Coherent ambient infrasound recorded by the international monitoring system. Geophys Res Lett 40:429-433. Scholar
  36. Ogawa T (1995) Lightning currents. In: Volland H (ed) Handbook of atmospheric electrodynamics, vol 1, pp 95–136. CRC PressGoogle Scholar
  37. Pasko VP (2009) Mechanism of lightning-associated infrasonic pulses from thunderclouds. J Geophys Res 114(D08205):1–10Google Scholar
  38. Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology. Mech Effects Space Sci Rev 168:475516. Scholar
  39. Rakov VA, Uman MA (2003) Lightning: physics and effects. Cambridge University PressGoogle Scholar
  40. Rison W, Thomas RJ, Krehbiel PR, Hamlin T, Harlin J (1999) A GPS-based three-dimensional lightning mapping system: initial observations in central New Mexico. Geophys Res Lett 26:3573–3576CrossRefGoogle Scholar
  41. Thobois L, Soderholm J (2015) Nowcasting severe storms—observing clear air close proximity environment of severe storms. Meteorological Technology International, UKIP Media & Events Ltd., Dorking, U.K., pp 132-135Google Scholar
  42. Thomas RJ, Krehbiel PR, Rison W, Hunyady SJ, Winn WP, Hamlin T, Harlin J (2004) Accuracy of the lightning mapping array. J Geophys Res 109(D14207):1–34Google Scholar
  43. Wilson CTR (1920) Investigation on lightning discharges and on the electric field of thunderstorms. Philos Trans R Soc Ser A 221:73–115CrossRefGoogle Scholar
  44. World Meteorological Organization (1956) World distribution of thunderstorm days. Secretariat of the World Meteorological Organization, Publ. 21, TP 6 and SupplGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Farges
    • 1
    Email author
  • François Coulouvrat
    • 2
  • Louis-Jonardan Gallin
    • 1
  • Régis Marchiano
    • 2
  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.Sorbonne Universités, UPMC Univ Paris, CNRS, UMR 7190, Institut Jean Le Rond d’AlembertParisFrance

Personalised recommendations