Advertisement

The Potential Impact of Upper Stratospheric Measurements on Sub-seasonal Forecasts in the Extra-Tropics

  • Christopher Lee
  • Pieter Smets
  • Andrew Charlton-PerezEmail author
  • Läslo Evers
  • Giles Harrison
  • Graeme Marlton
Chapter

Abstract

This chapter examines the potential improvements in tropospheric weather forecasts that might arise from an enhanced representation of the upper stratospheric state. First, the chapter reviews current operational practice regarding observation of the atmosphere and the relative paucity of observations in the altitude range 40–70 km. Then, we describe some idealised model calculations to quantify the potential gain in skill available from improved monitoring in this region. The idealised model experiments use a relaxation technique with the Hadley Centre General Environment Model, to assess the potential gain in skill from observations both of the whole stratosphere and the upper stratosphere. At weather forecasting timescales (up to forecast day 30), better knowledge of the stratosphere, close to the onset of a sudden stratospheric warming, improves forecasts of the tropospheric northern annular mode. Whole-stratosphere information significantly improved average surface temperature anomalies over northern North America, whilst upper stratosphere information improved anomalies over Central Siberia. These results suggest any new observational technique which can contribute to monitoring of the 40–70 km region would likely benefit tropospheric forecast skill during wintertime.

Notes

Acknowledgements

This work made use of the facilities of HECToR, the UK’s former national high-performance computing service. Access was provided by the Natural Environment Research Council’s High Performance Computing Facility. This research is part of the Atmospheric Dynamics Research Infrastructure in Europe (ARISE) project, funded by the European Union’s Seventh Framework Program. We would like to thank Kirsty Hanley, Grenville Lister, Scott Osprey, Paul Telford and Peter Watson, for their help setting up the experiments discussed here.

References

  1. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581–584CrossRefGoogle Scholar
  2. Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project, In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887Google Scholar
  3. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Res Geophys.  https://doi.org/10.1002/jgrd.50125Google Scholar
  4. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20(3):449–469CrossRefGoogle Scholar
  5. Day KA, Mitchell NJ (2010) The 16-day wave in the arctic and antarctic mesosphere and lower thermosphere. Atmos Chem Phys 10(3):1461–1472CrossRefGoogle Scholar
  6. Doviak RJ, Lataitis RJ, Holloway CL (1996) Cross correlations and cross spectra for spaced antenna wind profilers. 1. Theorecal analysis. Radio Sci 31(1):157–180CrossRefGoogle Scholar
  7. Garfinkel CI, Waugh DW, Gerber EP (2013) The effect of tropospheric jet latitude on coupling between the stratospheric polar vortex and the troposphere. J Clim 26(6):2077–2095CrossRefGoogle Scholar
  8. Gcos-134 (2009) Implementation plan for the global climate observing system reference upper air network 2009–2013. Technical report, World Meteorological Organization, WMO/TD No. 1506, Geneva, SwitzerlandGoogle Scholar
  9. Gerber EP, Orbe C, Polvani LM (2009) Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys Res Lett 36Google Scholar
  10. Harrison RG, Nicoll KA, Lomas AG (2012) Note: programmable data acquisition system for research measurements from meteorological radiosondes. Rev Sci Instrum 83(3):036106CrossRefGoogle Scholar
  11. Hitchcock P, Simpson IR (2014) The downward influence of stratospheric sudden warmings. J Sci Atmos.  https://doi.org/10.1175/JAS-D-14-0012.1CrossRefGoogle Scholar
  12. Hocking WK (2011) A review of mesosphere-stratosphere-troposphere (MST) radar developments and studies, circa 1997–2008. J Atmos Solar-Terr Phys 73:848882Google Scholar
  13. Hoinka KP (1997) The tropopause: discovery, definition and demarcation. Meteorologische Zeitschrift 6(6):281–303CrossRefGoogle Scholar
  14. Jeannet P, Bower C, Calpini B (2008) Global criteria for tracing the improvements of radiosondes over the last decades. Technical report, World Meteorological Organization, Instruments and Observing Methods Report No. 95, WMO/TD-No. 1433Google Scholar
  15. Jung T, Miller MJ, Palmer TN (2010) Diagnosing the origin of extended-range forecast errors. Monthly Weather Rev 138(6):2434–2446CrossRefGoogle Scholar
  16. Keckhut P, McDermid S, Swart D, McGee T, Godin-Beekmann S, Adriani A, Barnes J, Baray JL, Bencherif H, Claude H, di Sarra AG, Fiocco G, Hansen G, Hauchecorne A, Leblanc T, Lee CH, Pal S, Megie G, Nakane H, Neuber R, Steinbrecht W, Thayer J (2004) Review of ozone and temperature lidar validations performed within the framework of the network for the detection of stratospheric change. J Environ Monit 6(9):721–733CrossRefGoogle Scholar
  17. Keckhut P, Claud C, Funatsu B, Hauchecorne A, Maury P, Khaykin S, Le Pichon A, Steinbrecht W (2019) Temperature trends observed in the middle atmosphere and future directions. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht pp 805–823Google Scholar
  18. Kidwell KB, Goodrum G, Winston W (2009) NOAA KLM user’s guide, with NOAA-N, -N\(^{\prime }\) supplement. Technical report, National Environmental Satellite, Data, and Information Services, Silver Spring, MDGoogle Scholar
  19. Kuo YH, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS radio occultation soundings with radiosondes. Geophys Res Lett 32(5):L05817+Google Scholar
  20. Latteck R, Strelnikova I (2015) Extended observation of polar mesosphere winter echoes over Andya (69\(^\circ \)N) using MAARSY. J Geophys Res 120:8216–8226.  https://doi.org/10.1002/2015JD023291CrossRefGoogle Scholar
  21. Lee CF, Vaughan G, Hooper DA (2014) Evaluation of wind profiles from the NERC MST radar, Aberystwyth, UK. Atmos Meas Tech 7:3113–3126CrossRefGoogle Scholar
  22. Luers JK, Eskridge RE (1998) Use of radiosonde temperature data in climate studies. J Clim 11(5):1002–1019CrossRefGoogle Scholar
  23. Marlton GJ, Harrison RG, Nicoll KA, Williams PD (2015) Note: a balloon-borne accelerometer technique for measuring atmospheric turbulence. Rev Sci Instrum 86(1):016109CrossRefGoogle Scholar
  24. Marlton GJ, Williams PD, Nicoll KA (2016) On the detection and attribution of gravity waves generated by the 20 March 2015 solar eclipse. Philos Trans R Soc A 374:20150222CrossRefGoogle Scholar
  25. Nicoll KA, Harrison RG (2012) Balloon-borne disposable radiometer for cloud detection. Rev Sci Instrum 83(2):025111CrossRefGoogle Scholar
  26. Okamoto K (2008) L5 satellite remote sensing by temperature and humidity sounders. Satellite remote sensing of atmospheric constituents. In The Eighteenth IHP Training Course, Nagoya, JapanGoogle Scholar
  27. Pfotzer G (1972) History of the use of balloons in scientific experiments. Space Sci Rev 13:199–242CrossRefGoogle Scholar
  28. Rees WG (2012) Physical principles of remote sensing. Cambridge University Press, p 426. ISBN 9781283818063Google Scholar
  29. Renard C (1903) On the use of sounding balloons for meteorological observations at great heights. Monthly Weather Rev 31:570–571CrossRefGoogle Scholar
  30. Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat Geosci 6(2):98–102CrossRefGoogle Scholar
  31. Simpson IR, Hitchcock P, Shepherd TG, Scinocca JF (2011) Stratospheric variability and tropospheric annular-mode timescales. Geophys Res Lett 38(20)CrossRefGoogle Scholar
  32. Steiner AK, Kirchengast G, Borsche M, Foelsche U, Schoengassner T (2007) A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J Geophys Res 112(D22):D22110+Google Scholar
  33. Telford PJ, Braesicke P, Morgenstern O, Pyle JA (2008) Technical note: description and assessment of a nudged version of the new dynamics unified model. Atmos Chem Phys 8(6):1701–1712CrossRefGoogle Scholar
  34. Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J Clim 15(12):1421–1428CrossRefGoogle Scholar
  35. Thompson DWJ, Wallace JM (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293(85):85–89CrossRefGoogle Scholar
  36. Tripathi OP, Baldwin M, Charlton-Perez A, Charron M, Eckermann SD, Gerber E, Harrison RG, Jackson DR, Kim B-M, Kuroda Y, Lang A, Mahmood S, Mizuta R, Roff G, Sigmond M, Son S-W (2014) The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q J R Meteorol SocGoogle Scholar
  37. Tripathi OP, Baldwin M, Charlton-Perez A, Charron M, Cheung JCH, Eckermann SD, Gerber E, Jackson DR, Kuroda Y, Lang A, Mclay J, Mizuta R, Reynolds C, Roff G, Sigmond M, Son S-W, Stockdale T (2016) Examining the predictability of the stratospheric sudden warming of January 2013 using multiple NWP systems. Monthly Weather Rev 144(5):1935–1960.  https://doi.org/10.1175/MWR-D-15-0010.1CrossRefGoogle Scholar
  38. Wang J, Bian J, Brown WO, Cole H, Grubisic V, Young K (2009) Vertical air motion from T-REX radiosonde and dropsonde data. J Atmos Oceanic Technol 26(5):928–942CrossRefGoogle Scholar
  39. Zink F, Vincent RA (2001) Wavelet analysis of stratosphere gravity wave packets over Macquarie Island 1. Wave parameters. J Geophys Res 106(D10):10275–10288CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Christopher Lee
    • 1
  • Pieter Smets
    • 2
    • 3
  • Andrew Charlton-Perez
    • 1
    Email author
  • Läslo Evers
    • 2
    • 3
  • Giles Harrison
    • 1
  • Graeme Marlton
    • 1
  1. 1.Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.Seismology DivisionRoyal Netherlands Meteorological InstituteDe BiltThe Netherlands
  3. 3.Faculty of Civil Engineering and Geosciences, Department of Geoscience and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations