Advertisement

Middle Atmosphere Variability and Model Uncertainties as Investigated in the Framework of the ARISE Project

  • Elisabeth BlancEmail author
  • Katy Pol
  • Alexis Le Pichon
  • Alain Hauchecorne
  • Philippe Keckhut
  • Gerd Baumgarten
  • Jens Hildebrand
  • Josef Höffner
  • Gunter Stober
  • Robert Hibbins
  • Patrick Espy
  • Markus Rapp
  • Bernd Kaifler
  • Lars Ceranna
  • Patrick Hupe
  • Jonas Hagen
  • Rolf Rüfenacht
  • Niklaus Kämpfer
  • Pieter Smets
Chapter

Abstract

The middle atmosphere (from about 10–110 km altitude) is a highly variable environment at seasonal and sub-seasonal timescales. This variability influences the general atmospheric circulation through the propagation and breaking of planetary and gravity waves. Multi-instrument observations, performed in the framework of the ARISE (Atmospheric Dynamics Research InfraStructure in Europe) project, are used to quantify uncertainties in Numerical Weather Prediction (NWP) models such as the one of the European Centre for Medium-Range Weather Forecasts (ECMWF). We show the potential of routine and measurement campaigns to monitor the evolution of the middle atmosphere and demonstrate the limitations of NWP models to properly depict small-scale atmospheric disturbances. Continuous lidar and radar measurements conducted over several days at ALOMAR provide a unique high-resolution full description of solar tides and small-scale structures. Nightly averaged lidar profiles routinely performed in fair weather conditions at the Observatoire Haute-Provence (OHP) and Maïdo observatory (Reunion Island) provide a year-to-year evolution of stratosphere and mesosphere temperature profiles. Routine meteor radar observations depict the evolution of wind profiles and solar tides in the mesosphere and lower thermosphere. With the recent development of the portable Compact Rayleigh Autonomous Lidar (CORAL) which automatically measures temperature profiles at high temporal resolution, the possibility of combining different instruments at different places is now offered, promising the expansion of multi-instrument stations in the near future. Through a better description of infrasound propagation in the middle atmosphere and stratosphere–troposphere couplings, these new middle atmosphere datasets are relevant for infrasound monitoring operations, as well as for weather forecasting and other civil applications.

Notes

Acknowledgements

This work was partly performed during the course of the ARISE design study project, funded by the European Community’s Horizon 2020 program under grant agreement 653980. We thank Gerard Rambolamanana and the team of the Institut and Geophysics Observatory of Antananarivo (Madagascar). The Madagascar infrasound results would not have been possible without their involvement. We thank M Gausa and JP Camas from Alomar and Maïdo observatories and D. Fritts for relevant comments on this paper.

References

  1. Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727CrossRefGoogle Scholar
  2. Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, Sassi F, Sato K, Eckermann S, Ern M, Hertzog A, Kawatani YA, Pulido M, Shaw T, Sigmond M, Vincent R, Watanabe S (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. QJR Meteorol Soc 136:1103–1124.  https://doi.org/10.1002/qj.637CrossRefGoogle Scholar
  3. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics. Academic Press, New York, Harcourt Brace JovanovichGoogle Scholar
  4. Angot G, Keckhut P, Hauchecorne A, Claud C (2012) Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute Provence Observatory (44°N). J Geophys Res 117Google Scholar
  5. Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res 112:D23110.  https://doi.org/10.1029/2007JD008462CrossRefGoogle Scholar
  6. Assink JD, Le Pichon A, Blanc E, Kallel M, Khemiri L (2014a) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res 119.  https://doi.org/10.1002/2014jd021632Google Scholar
  7. Assink JD, Waxler P, Smets PSM, Evers LG (2014b) Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J Geophys Res 119.  https://doi.org/10.1002/2013jd021062Google Scholar
  8. Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  9. Bakas NA, Ioannou PJ (2007) Momentum and energy transport by gravity waves in stochastically driven stratified flows. Part I: radiation of gravity waves from a shear layer. J Atmos Sci 64(5):1509–1529CrossRefGoogle Scholar
  10. Baldwin M (2003) Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split. SPARC newsletter 20:24–26Google Scholar
  11. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584.  https://doi.org/10.1126/science.1063315CrossRefGoogle Scholar
  12. Baumgarten G (2010) Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km. Atmos Meas Tech 3:1509–1518.  https://doi.org/10.5194/amt-3-1509-2010CrossRefGoogle Scholar
  13. Baumgarten G, Fiedler J, Hildebrand J, Lübken FJ (2015) Inertia gravity wave in the stratosphere and mesosphere observed by Doppler wind and temperature lidar. Geophys Res Lett 42:10929–10936.  https://doi.org/10.1002/2015GL066991CrossRefGoogle Scholar
  14. Bedard AJ Jr, Georges TM (2000) Atmospheric infrasound. Phys Today 32–37 (2000)CrossRefGoogle Scholar
  15. Bertin M, Millet C, Bouche D (2014) A low-order reduced model for the long range propagation of infrasounds in the atmosphere. J Acoust Soc Am 136:37.  https://doi.org/10.1121/1.4883388CrossRefGoogle Scholar
  16. Blanc E, Plantet JL (1998) Detection capability of the IMS infrasound network: a more realistic approach. Infrasound workshop for CTBT monitoring, comprehensive Nuclear-Test-Ban treaty organization, Bruyères-le-Châtel, France, 21–24 July 1998Google Scholar
  17. Blanc E, Le Pichon A., Ceranna L, Farges T, Marty J, Herry P (2010) Global scale monitoring of acoustic and gravity waves for the study of the atmospheric dynamics. In: Le Pichon A., Blanc E., Hauchecorne A. (eds) Infrasound monitoring for atmospheric studies. Chapter 21. Springer, Dordrecht, pp 647–664Google Scholar
  18. Blanc E, Farges T, Le Pichon A, Heinrich P (2014) Ten year observations of gravity waves from thunderstorms in Western Africa. J Geophys Res 119(11):6409–6418.  https://doi.org/10.1002/2013JD020499CrossRefGoogle Scholar
  19. Blanc E, Ceranna L, Hauchecorn A, Charlton Perez A, Marchetti E, Evers L, Kvaerna T, Lastovicka J, Eliasson L, Crosby N, Blanc Benon P, Le Pichon A, Brachet N, Pilger C, Keckhut P. Assink J, Smets P, Lee C, Kero J, Sindelarova T, Kämpfer N, Rüfenacht R, Farges T, Millet C, Näsholm P, Gibbons S, Espy P, Hibbins R, Heinrich P, Ripepe M, Khaykin S, Mze N, Chum J (2018) Toward an improved representation of the middle atmospheric dynamics thanks to the ARISE project. Surv Geophy 39(2):171–225.  https://doi.org/10.1007/s10712-017-9444-0CrossRefGoogle Scholar
  20. Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803.  https://doi.org/10.1029/2005GL022486CrossRefGoogle Scholar
  21. Bretherton CS, Smolarkiewicz PK (1989) Gravity waves, compensating subsidence and detrainment around cumulus clouds. J Atmos Sci 46(6):740–759CrossRefGoogle Scholar
  22. Butler A, Seidel D, Hardiman S, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96:1913–1928.  https://doi.org/10.1175/BAMS-D-13-00173.1CrossRefGoogle Scholar
  23. Cansi Y (1995) An automatic seismic event processing for detection and location: The PMCC method. Geophys Res Lett 22(9):1021–1024CrossRefGoogle Scholar
  24. Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177:491–508.  https://doi.org/10.1111/j.1365-246X.2008.03998.xCrossRefGoogle Scholar
  25. Chanin ML, Garnier A, Hauchecorne A, Porteneuve J (1989) A Doppler lidar for measuring winds in the middle atmosphere. Geophy Res Let 16(11):1273CrossRefGoogle Scholar
  26. Chapman S, Lindzen RS (1970) Atmospheric tides: thermal and gravitational, Gordon and Breach, New York, 200 ppGoogle Scholar
  27. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J Clim 20:449–469CrossRefGoogle Scholar
  28. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee Y, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son S, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118(6):2494–2505.  https://doi.org/10.1002/jgrd.50125CrossRefGoogle Scholar
  29. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66(1):83–109.  https://doi.org/10.1029/JZ066i001p00083CrossRefGoogle Scholar
  30. Chunchuzov IP, Kulichkov SN, Firstov PP (2013) On acoustic N-wave reflections from atmospheric layered inhomogeneities. Izv Atmos Ocean Phys 49(3):285–297CrossRefGoogle Scholar
  31. Clauter D, Blandford R (1998) Capability modeling of the proposed international system 60-station infrasonic network. In: Proceedings of the infrasound workshop for CTBT monitoring, Los Alamos National Laboratory report LA-UR-98-56Google Scholar
  32. Cohen J, Jones J (2011) Tropospheric precursors and stratospheric warmings. J Clim 24:6562–6572.  https://doi.org/10.1175/2011JCLI4160.1CrossRefGoogle Scholar
  33. Conference on disarmament (1995) Report of the expert group to the Ad Hoc committee on a nuclear test ban, The international monitoring system, CD/NTB/WP.283, 20 Dec 1995Google Scholar
  34. Costantino L, Heinrich P, Mze N, Hauchecorne A (2015) A convective gravity wave propagation and breaking in the stratosphere, comparison between WRF model simulations and LIDAR data. Ann Geophys 33:1155–1171. www.ann-geophys.net/33/1155/2015/,  https://doi.org/10.5194/angeo-33-1155-2015e
  35. Delclos C, Blanc E, Broche P, Glangeaud F, Lacoume JL (1990) Processing and interpretation of microbarograph signals generated by the explosion of Mount St. Helens. J Geophys Res 95(D5):5485–5494CrossRefGoogle Scholar
  36. de Wit RJ, Hibbins RE, Espy PJ, Orsolini YJ, Limpasuvan V, Kinnison DE (2014) Observations of gravity wave forcing of the mesopause region during the January 2013 major sudden stratospheric warming. Geophys Res Lett 41(13):4745–4752.  https://doi.org/10.1002/2014GL060501CrossRefGoogle Scholar
  37. de Wit RJ, Hibbins RE, Espy PJ (2015) The seasonal cycle of gravity wave momentum flux and forcing in the high latitude northern hemisphere mesopause region. J Atmos Solar Terr Phys 127:21–29.  https://doi.org/10.1016/j.jastp.2014.10.002CrossRefGoogle Scholar
  38. Diamantakis M (2014) Improving ECMWF forecasts of sudden stratospheric warmings. ECMWF Newsletter 141:30–36Google Scholar
  39. Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26:111–133CrossRefGoogle Scholar
  40. Drob DP et al (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113:A12304.  https://doi.org/10.1029/2008JA013668CrossRefGoogle Scholar
  41. Drob DP, Meier RR, Picone JM, Garcés M (2010) Inversion of infrasound signals for passive atmospheric remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 24. Springer, Dordrecht, pp 701–732Google Scholar
  42. Evers LG, Siegmund P (2009) Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys Res Lett.  https://doi.org/10.1029/2009GL041323CrossRefGoogle Scholar
  43. Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garces M, Drob D, Kleiner D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 Sayarim infrasound calibration experiments. J Geophys Res 118:6122–6143.  https://doi.org/10.1002/jgrd.50398CrossRefGoogle Scholar
  44. Forbes JM (1982) Atmospheric tides: 1. Model description and results for the solar diurnal component. J Geophys Res 87(A7):5222–5240CrossRefGoogle Scholar
  45. Forbes JM (1995) Tidal and planetary waves. The upper mesosphere and lower thermosphere: a review of experiment and theory. In: Modeling the Ionosphere-Thermosphere, Geophysical Monograph Series, vol 87. AGU, Washington DC, pp 67–87CrossRefGoogle Scholar
  46. Fritts DC (1984) Shear excitation of atmospheric gravity waves. Part II: Nonlinear radiation from a free shear laye. J Atmos Sci 41(4):524–537CrossRefGoogle Scholar
  47. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003.  https://doi.org/10.1029/2001rg000106
  48. Gainville O, Blanc-Benon P, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 18. Springer, Dordrecht, pp 569–592Google Scholar
  49. Gerber EP, Orbe C, Polvani LM (2009) Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys Res Lett 36:L24801.  https://doi.org/10.1029/2009GL040913CrossRefGoogle Scholar
  50. Gibbons SJ, Asming V, Eliasson L, Fedorov A, Fyen J, Kero J, Koslovskaya E, Kvaerna T, Liszka L, Näsholm SP, Raita T, Roth M, Tiira T, Vinogradov Y (2015) The European Arctic: A laboratory for seismoacoustic studies. Seismol Res Lett 86(3).  https://doi.org/10.1785/0220140230CrossRefGoogle Scholar
  51. Goncharenko L, Chau JL, Condor P, Coster A, Benkevitch L (2013) Ionospheric effects of sudden stratospheric warming during moderate to high solar activity: case study of January 2013. Geophys Res Lett 40(19):4982–4986CrossRefGoogle Scholar
  52. Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res 115:D18116.  https://doi.org/10.1029/2010JD014017CrossRefGoogle Scholar
  53. Green DN, Le Pichon A, Ceranna L, Evers L (2010) Ground truth events: assessing the capability of infrasound networks using high resolution data analyses. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, DordrechtGoogle Scholar
  54. Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys Res Lett 7:565–568.  https://doi.org/10.1029/GL007i008p00565CrossRefGoogle Scholar
  55. Hauchecorne A, Chanin ML (1983) Mid-latitude Lidar observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88(C6):3843–3849CrossRefGoogle Scholar
  56. Hauchecorne A, Chanin ML, Wilson R (1987) Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett 14(9):933–936CrossRefGoogle Scholar
  57. Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar over the south of France, J Geophys Res 96:15.297–15.309CrossRefGoogle Scholar
  58. Hauchecorne A, Gonzalez N, Souprayen C, Manson AH, Meek CE, SingerW Scheer J (1994) Gravity-wave activity and its relation with prevailing winds during DYANA. J Atmos Terr Phys 56(13–14):1765–1778CrossRefGoogle Scholar
  59. Hauchecorne A, Keckhut P, Chanin ML (2010) Dynamics and transport in the middle atmosphere using remote sensing techniques from ground and space. In: Le Pichon A, Blanc E,. Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 22. Springer, Dordrecht, pp 665–683Google Scholar
  60. Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res 106(A10):21543–21548CrossRefGoogle Scholar
  61. Hildebrand J, Baumgarten G, Fiedler J, Lübken FJ (2017) Winds and temperatures of the Arctic middle atmosphere during January measured by Doppler lidar. Atmos Chem Phys Discuss.  https://doi.org/10.5194/acp-2017-167
  62. Hildebrand J, Baumgarten G, Fiedler J, Hoppe UP, Kaifler B, Lübken FJ, Williams BP (2012) Combined wind measurements by two different lidar instruments in the Arctic middle atmosphere. Atmos Meas Tech 5:2433–2445.  https://doi.org/10.5194/amt-5-2433-2012CrossRefGoogle Scholar
  63. Hirooka T (2000) Normal mode Rossby waves as revealed by UARS/ISAMS observations. J Atmos Sci 57(9):1277–1285CrossRefGoogle Scholar
  64. HirotaI, Hirooka T (1984) Normal mode Rossby waves observed in the upper stratosphere. Part I: First symmetric modes of zonal wavenumbers 1 and 2. J Atmos Sci 41:8, 1253–1267CrossRefGoogle Scholar
  65. Hocking WK, Fuller B, Vandepeer B (2001) Real-time determination of meteor—related parameters utilizing modern digital technology. J Atmos Solar Terr Phys 63(2–3):155–169.  https://doi.org/10.1016/S1364-6826(00)00138-3CrossRefGoogle Scholar
  66. Höffner J, Lautenbach J (2009) Daylight measurements of mesopause temperature and vertical wind with the mobile scanning iron lidar. Opt Lett 34:1351–1353.  https://doi.org/10.1364/OL.34.001351CrossRefGoogle Scholar
  67. Holton JR (1982) The role of gravity wave induced drag and diffusion in the momentum budget of the mesosphere. J Atmos Sci 39(4):791–799CrossRefGoogle Scholar
  68. Holton JR (1983) The influence of gravity wave breaking on the general circulation of the middle atmosphere. J Atmos Sci 40:2497–2507CrossRefGoogle Scholar
  69. Holton JR, Haynes PH, McIntyre ME, Douglass AR, Rood RB, Pfister L (1995) Stratosphere-troposphere exchange. Rev Geophys 33(4):403–439CrossRefGoogle Scholar
  70. Hoppel KW, Eckermann SD, Coy L, Nedoluha GE, Allen DR, Swadley SD, Baker NL (2013) Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon Weather Rev 141:3314–3330.  https://doi.org/10.1175/mwr-d-13-00003.1CrossRefGoogle Scholar
  71. Hupe P, Ceranna L, Pilger C (2016) Data mining on long-term barometric data within the ARISE2 project. In: 18th EGU general assembly, EGU2016, proceedings from the conference held 17–22 Apr 2016 in Vienna, Austria, p 3004Google Scholar
  72. Hupe P, Ceranna L, Pilger C, Le Pichon A (2017a) Using the IMS infrasound network for the identification of mountain-associated waves and gravity waves hotspots. In: 19th EGU general assembly, EGU2017, proceedings from the conference held 23–28 Apr 2017 in Vienna, Austria, p 13671Google Scholar
  73. Hupe P, Pilger C, Ceranna L (2017b) Using barometric time series of the ims infrasound network for a global analysis of thermally induced atmospheric tides. J Atmos Sci (submitted)Google Scholar
  74. Jones PW, Hamilton K, Wilson RJ (1997) A very high resolution general circulation model simulation of the global circulation in austral winter. J Atmos Sci 54(8):1107–1116CrossRefGoogle Scholar
  75. Kaifler B, Lübken FJ, Höffner J, Morris RJ, Viehl TP (2015) Lidar observations of gravity wave activity in the middle atmosphere over Davis (69°S, 78°E), Antarctica. J Geophys Res 4506–4521.  https://doi.org/10.1002/2014jd022879Google Scholar
  76. Keckhut P, Hauchecorne A, Chanin ML (1993) A critical review of the database acquired for the long-term surveillance of the middle atmosphere by the French Rayleigh lidars. J Atmos Ocean tech 10(6):850–867CrossRefGoogle Scholar
  77. Keckhut P, Gelman ME, Wild JD, Tissot F, Miller AJ, Hauchecorne A, Taylor FW (1996) Semidiurnal and diurnal temperature tides (30–55 km): climatology and effect on UARS-LIDAR data comparisons. J Geophys Res, 101:D6, 10299–10310CrossRefGoogle Scholar
  78. Kishore P, Namboothiri SP, Igarashi K, Murayama Y, Watkins BJ (2002) MF radar observations of mean winds and tides over Poker Flat, Alaska (65.1 N, 147.5 W). Ann Geophys 20:5, 679–690CrossRefGoogle Scholar
  79. Kodera K (2006) Influence of stratospheric sudden warmings on the equatorial troposphere. Geophys Res Lett 33:L06804.  https://doi.org/10.1029/2005GL024510CrossRefGoogle Scholar
  80. Kohma M, Sato K (2014) Variability of upper tropospheric clouds in the polar region during stratospheric sudden warmings. J Geophys Res Atmos 119:10100–10113.  https://doi.org/10.1002/2014JD021746CrossRefGoogle Scholar
  81. Kulichkov SN, Bush GA (2001) Rapid variations in infrasonic signals at long distances from one-type explosions. Izv Atmos Ocean Phys 37(3):306–313Google Scholar
  82. Kulichkov S (2010) On the prospect for acoustic sounding of the fine structure of the middle-atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 16. Springer, Dordrecht, pp 511–540Google Scholar
  83. Kulichkov SN, Chunchuzov IP, Popov OI (2010) simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv.Atmos Oceanic Phys 46(1):60–68CrossRefGoogle Scholar
  84. Kurylo MJ, Solomon S (1990) Network for the detection of stratospheric change: a status and implementation report. NASA upper atmosphere research program and NOAA climate and global change program (NASA), Washington DCGoogle Scholar
  85. Labitzke K (1977) Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon Weather Rev 105:762–770CrossRefGoogle Scholar
  86. Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza R, Le Pichon A, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190:687–701.  https://doi.org/10.1111/j.1365-246X.2012.05518.xCrossRefGoogle Scholar
  87. Lalas DP, Einaudi F (1976) On the characteristics of gravity waves generated by atmospheric shear layers. J Atmos Sci 33(7):1248–1259CrossRefGoogle Scholar
  88. Landes M, Le Pichon A, Shapiro NM, Hillers G, Campillo M (2014) Explaining global patterns of microbarom observations with wave action models. Geophys J Int 199:1328–1337.  https://doi.org/10.1093/gji/ggu324CrossRefGoogle Scholar
  89. Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910Google Scholar
  90. Le Pichon A, Garcés M, Blanc E, Barthélémy M, Drob D (2002) Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J Acoust Soc Am 111(1):629–641CrossRefGoogle Scholar
  91. Le Pichon A, Blanc E, Drob D (2005) Probing high-altitude winds using infrasound. J Geophys Res 110:D20104.  https://doi.org/10.1029/2005JD006020CrossRefGoogle Scholar
  92. Le Pichon A, Ceranna L, Garcés M, Drob D, Millet C (2006) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J Geophys Res 111:D11106.  https://doi.org/10.1029/2005JD006690CrossRefGoogle Scholar
  93. Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International Monitoring System’s infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112.  https://doi.org/10.1029/2008JD010907CrossRefGoogle Scholar
  94. Le Pichon A, Blanc E, Hauchecorne A (2010) Infrasound monitoring for atmospheric studies. Springer, Dortrecht. ISBN: 978-1-4020-9507-8Google Scholar
  95. Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121.  https://doi.org/10.1029/2011JD016670CrossRefGoogle Scholar
  96. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res 120.  https://doi.org/10.1002/.2015jd023273
  97. Le Pichon A, Hauchecorne A, Keckhut P, Khaykin S, Camas JP, Payen G, Kämpfer N, Rüfenacht R, Ceranna L (2016) Monitoring middle-atmospheric dynamics using independent ground-based wind and temperature measurements at Reunion Island. Geophys Res Abst 18, EGU2016-18553Google Scholar
  98. Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life-cycle of the Northern Hemisphere sudden stratospheric warmings. J Clim 17:2584–2596CrossRefGoogle Scholar
  99. Lindzen RS (1966) On the theory of the diurnal tide. Mon Wea Rev 94(5):295–301CrossRefGoogle Scholar
  100. Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res, 86:C10, 9707–9714CrossRefGoogle Scholar
  101. Lott F, Plougonven R, Vanneste J (2010) Gravity waves generated by sheared potential vorticity anomalies. J Atmos Sci 67:1, 157-–70Google Scholar
  102. Lott F, Guez L (2013) A stochastic parameterization of the gravity waves due to convection and impact on the equatorial stratosphere. J Geophys Res 118(16):8897–8909.  https://doi.org/10.1002/jgrd.50705CrossRefGoogle Scholar
  103. Lübken FJ, Höffner J, Viehl TP, Becker E, Latteck R, Kaifler B, Murphy DJ, Morris RJ (2015) Winter/summer transition in the Antarctic mesopause region. J Geophys Res 120:12394–12409.  https://doi.org/10.1002/2015JD023928CrossRefGoogle Scholar
  104. Lübken FJ, Baumgarten G, Hildebrand J, Schmidlin FJ (2016) Simultaneous and co-located wind measurements in the middle atmosphere by lidar and rocket-borne techniques. Atmos Meas Tech 9, 3911–3919.  https://doi.org/10.5194/amt-9-3911-2016, http://www.atmos-meas-tech.net/9/3911/2016/CrossRefGoogle Scholar
  105. Manney GL, Lawrence ZD (2016) The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss. Atmos Chem Phys 16:15371–15396.  https://doi.org/10.5194/acp-16-15371-2016CrossRefGoogle Scholar
  106. Manzini E, Karpechko AY, Anstey J, Baldwin MP, Black RX, Cagnazzo C, Calvo N, Charlton-Perez A, Christiansen B, Davini P, Gerber E (2014) Northern winter climate change: assessment of uncertainty in CMIP5 projections related to stratosphere-troposphere coupling. J Geophys Res 119(13):7979–7998Google Scholar
  107. Marchetti E, Ripepe M, Delle Donne D, Genco R, Finizola A, Garaebiti E (2013) Blast waves from violent explosive activity at Yasur Volcano, Vanuatu. Geophys Res Lett 40:5838–5843.  https://doi.org/10.1002/2013GL057900CrossRefGoogle Scholar
  108. Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162Google Scholar
  109. Marlton G, Charlton-Perez A, Harrison G, Lee C (2019) Calculating atmospheric gravity waves parameters from infrasound measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 701–719Google Scholar
  110. Marty J, Ponceau D, Dalaudier F (2010) Using the international monitoring system infrasound network to study gravity waves. Geophysl Res Lett 37:19Google Scholar
  111. Marty J (2019) The IMS infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  112. Matthias V, Hoffmann P, Manson A, Meek C, Stober G, Brown P, Rapp M (2013) The impact of planetary waves on the latitudinal displacement of sudden stratospheric warmings. Ann Geophys 31:1397–1415.  https://doi.org/10.5194/angeo-31-1397-2013CrossRefGoogle Scholar
  113. Matoza RS, Le Pichon A, Vergoz J, Herry P, Lalande JM, Lee H, Che IY, Rybin A (2011) Infrasonic observations of the June 2009 Sarychev Peak eruption, Kuril Islands: implications for infrasonic monitoring of remote explosive volcanism. J Volcanol Geotherm Res.  https://doi.org/10.1016/j.jvolgeores.2010.11.022CrossRefGoogle Scholar
  114. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28(8):1479–1494CrossRefGoogle Scholar
  115. Maury P, Claud C, Manzini E, Hauchecorne A, Keckhut P (2016) Charcateristics of stratospheric warming events during Northern winter. J Geophys Res 121:5368–5380.  https://doi.org/10.1002/2015JD024226CrossRefGoogle Scholar
  116. McIntyre ME (1992) Atmospheric dynamics: some fundamentals, with observational implications. In: The use of EOS for studies of atmospheric physics, pp 313–386Google Scholar
  117. Medvedev AS, Klaassen GP (2000) Parameterization of gravity wave momentum deposition based on nonlinear wave interactions: basic formulation and sensitivity tests. J Atmos Solar Terr Phys 62(11):1015–1033CrossRefGoogle Scholar
  118. Newnham DA, Ford JP, Moffat-Griffin T, Pumphrey HC (2016) Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230–250 GHz region. Atmos Meas Tech 9:3309–3323. www.atmos-meas-tech.net/9/3309/2016/,  https://doi.org/10.5194/amt-9-3309-2016CrossRefGoogle Scholar
  119. Mitchell NJ, Pancheva D, Middleton HR, Hagan M (2002) Mean winds and tides in the Arctic mesosphere and lower thermosphere. J Geophys Res 107:A1.  https://doi.org/10.1029/2001JA900127CrossRefGoogle Scholar
  120. Mzé N, Hauchecorne A, Keckhut P, Thétis M (2014) Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle latitude site. J Geophys Res 119(21)Google Scholar
  121. Pawson S, Kodera K, Hamilton K, Shepherd TG, Beagley SR, Boville BA, Langematz U (2000) The GCM–reality intercomparison project for SPARC (GRIPS): scientific issues and initial results. Bull Am Meteorol Soc 81:4, 781–796CrossRefGoogle Scholar
  122. Pendlebury D, Shepherd TG, Pritchard M, McLandress C (2008) Normal mode Rossby waves and their effects on chemical composition in the late summer stratosphere. Atmos Chem Phys 8(7):1925–1935CrossRefGoogle Scholar
  123. Pilger C, Bittner M (2009) Infrasound from tropospheric sources: impact on mesopause temperature? J Atmos Solar Terr Phys 71(8–9):816–822. https://doi.org/10.1016/j.jastp.2009.03.008CrossRefGoogle Scholar
  124. Polvani LM, Waugh DW (2004) Upward wave activity flux as precursor to extreme stratospheric events and subsequent weather regimes. J Clim 17:3548–3554Google Scholar
  125. Portnyagin YI et al (2004) Monthly mean climatology of the prevailing winds and tides in the Arctic mesosphere/lower thermosphere. Ann Geophys 22:3395–3410CrossRefGoogle Scholar
  126. Randel WJ, Wu F, Oltmans SJ, Rosenlof K, Nedoluha GE (2004) Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures. J Atmos Sci 61(17):2133–2148CrossRefGoogle Scholar
  127. Rind D, Donn WL, Dede E (1973) Upper air wind speeds calculated from observations of natural infrasound. J Atmos Sci 30:1726–1729CrossRefGoogle Scholar
  128. Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704CrossRefGoogle Scholar
  129. Rind D (1977) Heating of the lower thermosphere by the dissipation of acoustic waves. J Atmos Terr Phys 39(4):445–456CrossRefGoogle Scholar
  130. Rüfenacht R, Murk A, Kämpfer N, Eriksson P, Buehler SA (2014) Middle-atmospheric zonal and meridional wind profiles from polar, tropical and mid-latitudes with the ground-based microwave Doppler wind radiometer WIRA. Atmos Meas Tech 7:4491–4505.  https://doi.org/10.5194/amt-7-4491-2014CrossRefGoogle Scholar
  131. Rüfenacht R, Kämpfer N (2019) Continuous middle-atmospheric wind profile observations by Doppler microwave radiometry. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 635–647Google Scholar
  132. Salby ML (1984) Survey of planetary-scale traveling waves: the state of theory and observations. Rev Geophys 22(2):209–236CrossRefGoogle Scholar
  133. Sandford DJ, Beldon CL, Hibbins RE, Mitchell NJ (2010) Dynamics of the Antarctic and Arctic mesosphere and lower thermosphere—part 1: mean winds. Atmos Chem Phys 10:10273–10289CrossRefGoogle Scholar
  134. Schöch A, Baumgarten G, Fiedler J (2008) Polar middle atmosphere temperature climatology from Rayleigh lidar measurements at ALOMAR (69°N). Ann Geophys 26:1681–1698CrossRefGoogle Scholar
  135. Schoeberl MR (1978) Stratospheric warmings: observations and theory. Rev Geophys 16(4):521–538CrossRefGoogle Scholar
  136. Schoeberl MR, Hartmann DL (1991) The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletions. Science 251:46–52.  https://doi.org/10.1126/science.251.4989.46CrossRefGoogle Scholar
  137. Shaw TA, Shepherd TG (2008a) Atmospheric science: raising the roof. Nat Geosci 1(1):12–13CrossRefGoogle Scholar
  138. Shaw TA, Shepherd TG (2008b) Wave-activity conservation laws for the three-dimensional anelastic and Boussinesq equations with a horizontally homogeneous background flow. J Fluid Mech 594:493–506CrossRefGoogle Scholar
  139. Shepherd TG (2000) The middle atmosphere. J Atmos Solar Terr Phys 62(17):1587–1601CrossRefGoogle Scholar
  140. Shutts GJ, Gray MEB (1994) A numerical modelling study of the geostrophic adjustment process following deep convection. QJR Meteorol Soc 120(519):1145–1178Google Scholar
  141. Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nature Geosci 6:98–102.  https://doi.org/10.1038/ngeo1698CrossRefGoogle Scholar
  142. Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119:12084–12099.  https://doi.org/10.1002/2014JD021905CrossRefGoogle Scholar
  143. Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res 121:4637–4650.  https://doi.org/10.1002/2015JD024251CrossRefGoogle Scholar
  144. Smets SM, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755Google Scholar
  145. Stober G, Matthias V, Jacobi C, Wilhelm S, Höffner J, Chau JL (2017) Exceptionally strong summer-like zonal wind reversal in the upper mesosphere during winter 2015/16. Ann Geophys 35:711–720.  https://doi.org/10.5194/angeo-35-711-2017CrossRefGoogle Scholar
  146. Tailpied D, Le Pichon A, Marchetti E, Assink S Vergniolle (2016) Assessing and optimizing the performance of infrasound networks to monitor volcanic eruptions. Geophys J Int 208(1):437–448.  https://doi.org/10.1093/gji/ggw400CrossRefGoogle Scholar
  147. Thompson DWJ, Baldwin MP, Wallace JM (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for prediction. J Clim 15:1421–1428CrossRefGoogle Scholar
  148. Tripathi OP, Baldwin M, Charlton-Perez AJ, Charron M, Eckermann SD, Gerber E, Harrison RG, Jackson DR, Kim BM, Kuroda Y, Lang A, Mahmood S, Mizuta R, Roff G, Sigmond M, Son SW (2014) Review: the predictability of the extra-tropical Stratosphere on monthly timescales and its impact on the skill of tropospheric forecasts. Q J R Meteoro Soc. ISSN 1477-870X.  https://doi.org/10.1002/qj.2432CrossRefGoogle Scholar
  149. Venkat Ratnam M, Narendra Babu A, Jagannadha Rao VVM, Vijaya Bhaskar Rao S, Narayana Rao D (2008) MST radar and radiosonde observations of inertial gravity wave climatology over tropical stations: source mechanisms. J Geophys Res 113:D7CrossRefGoogle Scholar
  150. von Zahn U, von Cossart G, Fiedler J, Fricke KH, Nelke G, Baumgarten G, Rees D, Hauchecorne A, Adolfsen K (2000) The ALOMAR Rayleigh/Mie/Raman lidar: objectives, configuration, and performance. Ann Geophys 18:815–833CrossRefGoogle Scholar
  151. Walker KT, Hedlin MA (2010) A Review of Wind-Noise Reduction Methodologies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, DordrechtGoogle Scholar
  152. Whitaker RW (1995) Infrasonic monitoring. In: Proceedings of the 17th annual seismic research symposium, Scottsdale, Arizona. Phillips Lab, Hanscom AFB, Mass, pp 997–1000Google Scholar
  153. Williams BP, Fritts DC, She CY, Goldberg RA (2006) Gravity wave propagation through a large semidiurnal tide and instabilities in the mesosphere and lower thermosphere during the winter 2003 MaCWAVE rocket campaign. Ann Geophys 24(4):1199–1208CrossRefGoogle Scholar
  154. Wilson CR, Szuberla CA, Olson JV (2010) High-latitude observations of infrasound from Alaska and Antarctica: mountains Associated Waves and Geomagnetic/Auroral infrasonic signals. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter. Springer, pp 415–451. ISBN:978-1-4020-9507-8Google Scholar
  155. Wilson R, Chanin ML, Hauchecorne A (1991) Gravity waves in the middle atmosphere observed by Rayleigh lidar: 1, case studies. J Geophys Res 96(D3):5153–5167CrossRefGoogle Scholar
  156. Wu DL, Eckermann SD (2008) Global gravity wave variances from Aura MLS: characteristics and interpretation. J Atmos Sci 65(12):3695–3718CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elisabeth Blanc
    • 1
    Email author
  • Katy Pol
    • 1
  • Alexis Le Pichon
    • 1
  • Alain Hauchecorne
    • 2
  • Philippe Keckhut
    • 2
  • Gerd Baumgarten
    • 3
  • Jens Hildebrand
    • 3
  • Josef Höffner
    • 3
  • Gunter Stober
    • 3
  • Robert Hibbins
    • 4
  • Patrick Espy
    • 4
  • Markus Rapp
    • 5
  • Bernd Kaifler
    • 5
  • Lars Ceranna
    • 6
  • Patrick Hupe
    • 6
  • Jonas Hagen
    • 7
  • Rolf Rüfenacht
    • 7
  • Niklaus Kämpfer
    • 7
  • Pieter Smets
    • 8
    • 9
  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.LATMOS-IPSLGuyancourtFrance
  3. 3.Leibniz-Institute of Atmospheric Physics, Rostock UniversityKühlungsbornGermany
  4. 4.Norwegian University of Science and TechnologyTrondheimNorway
  5. 5.DLR, German Aerospace CenterOberpfaffenhofenGermany
  6. 6.Federal Institute for Geosciences and Natural ResourcesHannoverGermany
  7. 7.Institute of Applied Physics, University of BernBernSwitzerland
  8. 8.Department of Seismology and AcousticsKNMIDe BiltNetherlands
  9. 9.Department of Geoscience and EngineeringDelft University of TechnologyDelftNetherlands

Personalised recommendations