Advertisement

Large-Scale and Transient Disturbances and Trends: From the Ground to the Ionosphere

  • Jan LaštovičkaEmail author
  • Tereza Šindelářová
Chapter

Abstract

Infrasonic waves excited at surface or in the troposphere propagate to longer distances via reflections from the middle and upper stratosphere or the lower thermosphere. These two atmospheric regions are affected by large-scale and transient disturbances, by long-term changes and trends. A brief review is given with particular emphasis on the stratosphere and lower thermosphere. The impact of such disturbances and long-term trends on the propagation of infrasonic waves is qualitatively estimated. Two dominant disturbances of solar origin, which substantially affect the atmosphere, and particularly the ionosphere, are solar flares and geomagnetic storms. Atmospheric waves, namely gravity waves, planetary waves, and tidal waves, affect both regions of infrasound reflections. The major midwinter stratospheric warming has pronounced effect on the height profile of temperature, thus they are capable to significantly affect propagation of infrasonic waves. There are also sporadic effects like earthquakes, which excite infrasound and gravity waves, but their overall impact on infrasound propagation is small. The impact of atmospheric waves is smaller than that of some sporadic effects like the major stratospheric warmings but atmospheric waves are continuously present in the atmosphere. Both the stratosphere and thermosphere experience also long-term changes and trends, in recent decades of predominantly anthropogenic origin (greenhouse effect, ozone depletion). These long-term changes are small but continuous, so they do not affect behavior of infrasonic waves on short-term scales but might have some effect on long-term scales like changes from decade to decade.

Keywords

Infrasound Transient disturbances Trends Atmosphere Ionosphere 

Notes

Acknowledgements

Support by the Grant Agency of the Czech Republic via Grants 15-03909S and 13-09778P is acknowledged and the European Commission’s project ARISE2 (Grant Agreement 653980).

References

  1. Albers JR, Birner T (2014) Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J Atmos Sci 71:4028–4054.  https://doi.org/10.1175/JAS-D-14-0026.1CrossRefGoogle Scholar
  2. Altadill D, Apostolov EM, Boska J, Lastovicka J, Sauli P (2004) Planetary and gravity wave signatures in the F region ionosphere with impact to radio propagation predictions and variability. Annals Geophys 47:1109–1119Google Scholar
  3. Andrioli VF, Fritts DC, Batista PP, Clemensha BR, Janches D (2013) Diurnal variation in gravity wave activity at low and middle latitudes. Ann Geophys 31:2123–2135.  https://doi.org/10.5194/angeo-31-2123-2013CrossRefGoogle Scholar
  4. Angot G, Keckhut P, Hauchecorne A, Claud C (2012) Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). J Geophys Res 117:D21102.  https://doi.org/10.1029/2012JD017631CrossRefGoogle Scholar
  5. Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  6. Astafyeva E, Lognonne P, Rolland L (2011) First ionospheric images of the seismic fault slip on the example of the Tohoku-oki earthquake. Geophys Res Lett 38:L22104.  https://doi.org/10.1029/2011GL049623CrossRefGoogle Scholar
  7. Azeem I, Crowley G, Honniball C (2015) Global ionospheric response to the 2009 sudden stratospheric warming event using ionospheric data assimilation four-dimensional (IDA4D) algorithm. J Geophys Res Space Phys 120:4009–4019.  https://doi.org/10.1002/2015JA020993CrossRefGoogle Scholar
  8. Baker DM, Davies K (1969) F2-region acoustic waves from severe weather. J Atmos Sol-Terr Phys 31:1345–1352CrossRefGoogle Scholar
  9. Baker DN, Blake JD, Klebesadel WR, Higbie PR (1986) Highly relativistic electrons in the Earth’s outer magnetosphere, 1, lifetimes and temporal history 1979–1984. J Geophys Res 91:4265–4273CrossRefGoogle Scholar
  10. Beig G (2011) Long-term trends in the temperature of the mesosphere/lower thermosphere region: 1. Anthropogenic influences. J Geophys Res 116:A00H11.  https://doi.org/10.1029/2011ja016646Google Scholar
  11. Besalpov PA, Savina ON (2015) Exponential and local Lamb waves in the nonisothermal atmosphere as an obstacle to the acoustic-gravity disturbance propagation up to the ionosphere. J Atmos Sol-Ter Phys 123:137–143.  https://doi.org/10.1016/j.jastp.2015.01.002CrossRefGoogle Scholar
  12. Blanc E (1985) Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary. Ann Geophys 3:673–688Google Scholar
  13. Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887Google Scholar
  14. Boska J, Sauli P, Altadill D, Sole G, Alberca LF (2003) Diurnal variation of the gravity wave activity at midlatitudes of the ionospheric F region. Stud Geoph Geod 47:579–586CrossRefGoogle Scholar
  15. Bourassa AE, Degenstein DA, Randel WJ, Zawodny JM, Kyrölä E, McLinden CA, Sioris CE, Roth CZ (2014) Trends in stratospheric ozone derived from merged SAGE II and Odin-ORISIS satellite observations. Atmos Chem Phys 14:6983–6994. http://www.atmos-chem-phys.net/14/6983/2014/CrossRefGoogle Scholar
  16. Bremer J (2008) Long-term trends in the ionospheric E and F1 regions. Ann Geophys 26:1189–1197CrossRefGoogle Scholar
  17. Buonsanto MJ (1999) Ionospheric storms—a review. Space Sci Rev 88:563–601.  https://doi.org/10.1023/A:1005107532631CrossRefGoogle Scholar
  18. Butchart N (2014) The Brewer-Dobson circulation. Rev Geophys 52:157–184.  https://doi.org/10.1002/2013RG000448CrossRefGoogle Scholar
  19. Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177:491–508.  https://doi.org/10.1111/j.1365-246x.2008.03998.xCrossRefGoogle Scholar
  20. Chernogor LF (2015) Ionospheric effects oif the Chelyabinsk meteoroid. Geomagn Aeron 55:353–368CrossRefGoogle Scholar
  21. Chum J, Athieno R, Baše J, Burešová D, Hruška F, Laštovička J, McKinnell LA, Šindelářová T (2012a) Statistical investigation of horizontal propagation of gravity waves in the ionosphere over Europe and South Africa. J Geophys Res Space Phys 117.  https://doi.org/10.1029/2011ja017161CrossRefGoogle Scholar
  22. Chum J, Hruska F, Zednik J, Lastovicka J (2012b) Ionospheric disturbances (infrasound waves) over the Czech Republic excited by the 2011 Tohoku earthquake. J Geophys Res 117:A08319.  https://doi.org/10.1029/2012JA017767CrossRefGoogle Scholar
  23. Ern M, Ploeger F, Preusse P, Gille JC, Gray LJ, Kalisch S, Mlynczak MG, Russell JM, Riese M (2014) Interaction of gravity waves with QBO: a satellite perspective. J Geophys Res Atmos 119:2329–2355.  https://doi.org/10.1002/2013JD020731CrossRefGoogle Scholar
  24. Farges T, Coulouvrat F, Gallin LJ, Marchiano R (2019) Infrasound for detection, localization, and geometrical reconstruction of lightning flashes. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 911–938Google Scholar
  25. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1):1003.  https://doi.org/10.1029/2001RG000106CrossRefGoogle Scholar
  26. Fritts DC, Vadas SL, Wan K, Werne JA (2006) Mean and variable forcing of the middle atmosphere by gravity waves. J Atmos Sol-Terr Phys 68:247–265.  https://doi.org/10.1016/j.jastp.2005.04.010CrossRefGoogle Scholar
  27. Galvan DA, Komjathy A, Hickey MP, Stephens P, Snively J, Song YT, Butala MD, Mannucci AJ (2012) Ionospheric signatures of Tohoku-Oki tsunami of March 11, 2011: model comparisons near the epicenter. Radio Sci 47:RS4003.  https://doi.org/10.1029/2012rs.005023
  28. Georges TM (1967) ESSA Technical report IER 57-ITSA 54. Ionospheric effects of atmospheric waves. Institute for Telecomunication Sciences and Aeronomy, Boulder, 341 ppGoogle Scholar
  29. Georges TM (1973) Infrasound from convective storms: examining the evidence. Rev Geophys Space Phys 11:571–594CrossRefGoogle Scholar
  30. Hao YQ, Xiao Z, Zhang DH (2012) Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake. J Geophys Res 117:A02305.  https://doi.org/10.1029/2011JA017036CrossRefGoogle Scholar
  31. Hao YQ, Xiao Z, Zhang DH (2013) Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake. J Geophys Res Space Phys 118:3914–3923.  https://doi.org/10.1002/jgra.50326CrossRefGoogle Scholar
  32. Harris NRP et al (2008) Ozone trends at northern mid- and high latitudes—a European perspective. Ann Geophys 26:1207–1220.  https://doi.org/10.5194/angeo-26-1207-2008CrossRefGoogle Scholar
  33. Hegglin M, Plummer DA, Shepherd TG, Scinocca JF, Anderson J, Froidevaux L, Funke B, Hurst D, Rozanov A, Urban J, von Clarman T, Walker KA, Wang HJ, Tegtmeier S, Weigel K (2014) Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat Geosci 7:768–776CrossRefGoogle Scholar
  34. Hickey MP, Schubert G, Walterscheid RL (2001) Acoustic wave heating of the thermosphere. J Geophys Res Space Phys 106(A10):21453–21548CrossRefGoogle Scholar
  35. Hoffmann L, Xue X, Alexander MJ (2013) A global view of stratospheric gravity wvae hotspots located with Atmospheric Infrared Sounder observations. J Geophys Res Atmos 118:416–434.  https://doi.org/10.1029/2012JD018658CrossRefGoogle Scholar
  36. Hood L, Rossi S, Beulen M (1999) Trends in lower stratospheric zonal winds, Rossby wave breaking behavior, and column ozone at northern midlatitudes. J Geophys Res Atmos 104(D20):24321–24339CrossRefGoogle Scholar
  37. Huang FT, Mayr HG, Russell III JM, Mlynczak MG (2014) Ozone and temperature decadal trends in the stratosphere, mesosphere and lower thermosphere, based on measurements from SABER on TIMED. Ann Geophys 32:935–949. www.ann-geophys.net/32/935/2014/CrossRefGoogle Scholar
  38. IPCC (Intergovernmental Panel on Climate Change) (2007) In: Solomon S et al (eds) Climate change 2007: the physical science basis. Cambridge Univ. Press, CambridgeGoogle Scholar
  39. IPCC (Intergovernmental Panel on Climate Change) (2013) In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge Univ. Press, CambridgeGoogle Scholar
  40. Jadin EA (1997) Diagnosis of long-term changes in stratospheric dynamics. Izv FIZ Atmos Ocean 33:787–794Google Scholar
  41. Jiang Q, Doyle JD, Reinecke A, Smith RB, Eckermann SD (2013) A modeling study of stratospheric waves over the Southern Andes and Drake Passage. J Atmos Sci 70:1668–1689.  https://doi.org/10.1175/JAS-D-12-0180.1CrossRefGoogle Scholar
  42. Kishore P, Venkat Ratnam M, Velicogna I, Sivakumar V, Bencherif H, Clemesha BR, Simonich DM, Batista PP, Beig G (2014) Long-term trends observed in the middle atmosphere temperatures using ground based LIDARs and satellite borne measurements. Ann Geophys 32:301–317. www.ann-geophys.net/32/301/2014/CrossRefGoogle Scholar
  43. Kozubek M, Križan P, Laštovička J (2015) Northern hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends. Atmos Chem Phys 15:2203–2213. http://www.atmos-chem-phys.net/15/2203/2015/CrossRefGoogle Scholar
  44. Krasnov VM, Drobzheva Ya V, Laštovička J (2006) Recent advances and difficulties of infrasonic wave investigation in the ionosphere. Surv Geophys 27:169–209CrossRefGoogle Scholar
  45. Krasnov VM, Drobzheva Ya V, Venart JES, Laštovička J (2003) A re-analysis of the atmospheric and ionospheric effects of the Flixborough explosion. J Atmos Sol-Terr Phys 65:1205–1212CrossRefGoogle Scholar
  46. Laine M, Latva-Pukkila N, Kyrölä E (2014) Analysing time-varying trends in stratospheric ozone time series using the state space approach. Atmos Chem Phys 14:9707–9725. http://www.atmos-chem-phys.net/14/9707/2014/CrossRefGoogle Scholar
  47. Laštovička J (1996) Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere. J Atmos Terr Phys 58:831–843CrossRefGoogle Scholar
  48. Laštovička J (2006) Forcing of the ionosphere by waves from below. J Atmos Sol-Terr Phys 68:479–497.  https://doi.org/10.1016/j.jastp.2005.01.018CrossRefGoogle Scholar
  49. Laštovička J (2009) Lower ionosphere response to external forcing. Adv Space Res 43:1–14CrossRefGoogle Scholar
  50. Laštovička J (2013) Trends in the upper atmosphere and ionosphere: recent progress. J Geophys Res Space Phys 118:3924–3935.  https://doi.org/10.1002/jgra.50341CrossRefGoogle Scholar
  51. Laštovička J, Akmaev RA, Beig G, Bremer J, Emmert JT, Jacobi C, Jarvis MJ, Nedoluha G, Portnyagin YI, Ulich T (2008) Emerging pattern of global change in the upper atmosphere and ionosphere. Ann Geophys 26:1255–1268. www.ann-geophys.net/26/1255/2008/CrossRefGoogle Scholar
  52. Laštovička J, Baše J, Hruška F, Chum J, Šindelářová T, Horálek J, Zedník J, Krasnov V (2010) Simultaneous infrasonic, seismic, magnetic and ionospheric observations in an earthquake epicenter. J Atmos Sol-Terr Phys 72:1231–1240.  https://doi.org/10.1016/j.jastp.2010.08.005CrossRefGoogle Scholar
  53. Laštovička J, Šauli P, Križan P, Novotná D (2003) Persistence of the planetary wave type oscillations in foF2 over Europe. Ann Geophys 21:1543–1552CrossRefGoogle Scholar
  54. Laštovička J, Solomon SC, Qian L (2012) Trends in the neutral and ionized upper atmosphere. Space Sci Rev 168:113–145.  https://doi.org/10.1007/s11214-011-9799-3CrossRefGoogle Scholar
  55. Li T, Leblanc T, McDermid IS, Keckhut P, Hauchecorne A, Dou XK (2011) Middle atmosphere temperature trend and solar cycle revealed by long-term Rayleigh lidar observations. J Geophys Res Atmos 116:D00P05.  https://doi.org/10.1029/2010jd01527
  56. Makela JJ, Lognonne P, Hebert H, Gehrels T, Rolland L, Aligeyer S, Kherani A, Occhipinti G, Astafyeva E, Coisson P, Loevenbruck A, Clevede E, Kelley MC, Lamouroux J (2011) Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generate dby the Tohoku earthquake of 11 March 2011. Geophys Res Lett 38:L00G02.  https://doi.org/10.1029/2011gl047860CrossRefGoogle Scholar
  57. Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162Google Scholar
  58. Meriwether JW, Mirick JL, Biondi MA, Herraro FA, Fesen CG (1996) Evidence for orographic wave heating in the equatorial thermosphere at solar maximum. Geophys Res Lett 23:2177–2180CrossRefGoogle Scholar
  59. Meriwether JW, Biondi MA, Herraro FA, Fesen CG, Hallenback DC (1997) Optical interferometric studies of the nighttime equatorial thermosphere; enahanced temperatures and zonal wind gradients. J Geophys Res 102:20041–20058CrossRefGoogle Scholar
  60. Monier E, Weare BC (2011) Climatology and trends in the forcing of the stratospheric zonal-mean flow. Atmos Chem Phys 11:12751–12771CrossRefGoogle Scholar
  61. Occhipinti G, Rolland L, Lognonne P, Watada S (2013) From Sumatra 2004 to Tohoko-Oki 2011: the systematic GPS detection of the ionospheric signatures induced by tsunamigenic earthquakes. J Geophys Res Space Phys 118:3626–3636.  https://doi.org/10.1002/jgra.50322CrossRefGoogle Scholar
  62. Osso A, Sola Y, Rosenlof K, Hassler B, Bech J, Lorente J (2015) How robust are trends in the Brewer-Dobson circulation derived from observed stratospheric temperatures? J Clim 28:3024–3039.  https://doi.org/10.1175/JCLI-D-14-00295.1CrossRefGoogle Scholar
  63. Pancheva D (2001) Non-linear interaction of tides and planetary waves in the mesosphere and lower thermosphere: observations over Europe. Phys Chem Earth Part C 26:411–418CrossRefGoogle Scholar
  64. Pilger C, Schmidt C, Bittner M (2013a) Statistical analysis of infrasound signatures in aiglow observations: indications for acoustic resonance. J Atmos Sol-Terr Phys 93:70–79.  https://doi.org/10.1016/j.jastp.2012.11.011CrossRefGoogle Scholar
  65. Pilger C, Schmidt C, Streicher F, Wust S, Bittner M (2013b) Airglow observations of orographic, volcanic and meteorological infrasound signatures. J Atmos Sol-Terr Phys 104:55–66.  https://doi.org/10.1016/j.jastp.2013.08.008CrossRefGoogle Scholar
  66. Ploeger F, Abalos M, Birner T, Konopka P, Legras B, Muller R, Riese M (2015) Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air. Geophys Res Lett 42:2047–2054.  https://doi.org/10.1002/2014GL062927CrossRefGoogle Scholar
  67. Pramitha M, Venkat Ratnam M, Taori A, Krishna Murthy BV, Pallamraju D, Vijaya S, Rao B (2015) Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray tracing technique. Atmos Chem Phys 15:2709–2721.  https://doi.org/10.5194/acp-15-2709-2015CrossRefGoogle Scholar
  68. Prasad SS, Schneck LJ, Davies K (1975) Ionospheric disturbances by severe tropospheric weather storms. J Atmos Terr Phys 37:1357–1363CrossRefGoogle Scholar
  69. Randel WJ (2010) Variability and trends in stratospheric temperature and water vapor. In: Polvani LM, Sobel AH, Waugh DW (eds) Stratosphere: dynamics, transport and chemistry, geophysical monograph series, vol 190, pp 123–135.  https://doi.org/10.1029/2009gm000870CrossRefGoogle Scholar
  70. Remsberg E (2015) Methane as a diagnostic tracer of changes in the Brewer-Dobson circulation of the stratosphere. Atmos Chem Phys 15:3739–3754. http://www.atmos-chem-phys.net/15/3739/2015/CrossRefGoogle Scholar
  71. Ren RC, Yang Y (2012) Changes in winter stratospheric circulation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv Atmos Sci 29:1374–1389.  https://doi.org/10.1007/s00376-012-1184-yCrossRefGoogle Scholar
  72. Rind D (1977) Heating of lower thermosphere by dissipation of acoustic waves. J Atmos Sol-Terr Phys 39:445–456CrossRefGoogle Scholar
  73. Šauli P, Boska J (2001) Tropospheric events and possible related gravity wave activity effects on the ionosphere. J Atmos Sol Terr Phys 63:945–950CrossRefGoogle Scholar
  74. Sentman DD, Wescott EM, Picard RH, Winick JR, Stenbaek-Nielsen HC, Dewan EM, Moudry DR, Sao Sabbas FT, Heavner MJ, Morrill J (2003) Simultaneous observations of mesospheric gravity waves and sprites generated by a Midwestern thunderstorm. J Atmos Sol-Terr Phys 65:537–550.  https://doi.org/10.1016/S1364-6826(02)00328-0CrossRefGoogle Scholar
  75. Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashi S, Peubey C (2014) Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Q J R Meteorol Soc 140:329–353.  https://doi.org/10.1002/qj.2317CrossRefGoogle Scholar
  76. Šindelářová T, Buresova D, Chum J, Hruska F (2009) Doppler observations of infrasonic waves of meteorological origin at ionospheric heights. Adv Space Res 43:1644–1651.  https://doi.org/10.1016/j.asr.2008.08.022CrossRefGoogle Scholar
  77. Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res Atmos 119:12084–12099.  https://doi.org/10.1002/2014JD021905CrossRefGoogle Scholar
  78. Smets P, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  79. Solomon SC, Qian L, Roble RG (2015) New 3-D simulations of climate change in the thermosphere. J Geophys Res Space Phys 120:2183–2193.  https://doi.org/10.1002/2014JA020886CrossRefGoogle Scholar
  80. Tsugawa T, Saito A, Otsuka Y, Nishioka M, Maruyama T, Kato H, Nagatsuma T, Murata KT (2012) Concentric waves observed in the ionosphere after the 2011 Tohoku earthquake. CAWSES-II TG4 Newsletter 8:2–4Google Scholar
  81. Urban J, Lossow S, Stiller G, Read W (2014) Another drop in water vapor, EOS. Trans AGU 95(27):245–246.  https://doi.org/10.1002/2014EO27CrossRefGoogle Scholar
  82. Vadas SL, Fritts DC (2004) Thermospheric responses to gravity waves arising from mesoscale convective complexes. J Atmos Sol-Ter Phys 66:781–804.  https://doi.org/10.1016/j.jastp.2004.01.25CrossRefGoogle Scholar
  83. Vadas SL, Fritts DC (2005) Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity. J Geophys Res 110:D15103.  https://doi.org/10.1029/2004JD005574CrossRefGoogle Scholar
  84. Vadas SL, Fritts DC (2006) Influence of solar variability on gravity wave structure and dissipation in the thermosphere from tropospheric convection, J Geophys Res 111:A10S12.  https://doi.org/10.1029/2005ja011510
  85. Vadas SL (2007) Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources. J Geophys Res 112:A06305.  https://doi.org/10.1029/2006JA011845CrossRefGoogle Scholar
  86. Vadas SL, Nicholls MJ (2012) The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: theory. J Geophys Res 117:A05322.  https://doi.org/10.1029/2011JA017426CrossRefGoogle Scholar
  87. Várai A, Homonnai V, Jánosi IM, Müller R (2015) Early signatures of ozone trend reversal over the Antarctic. Earth’s Future 3:95–109.  https://doi.org/10.1002/2014EF000270CrossRefGoogle Scholar
  88. Walterscheid RL, Hickey MP (2011) Group velocity and energy flux in the thermosphere: limits on the validity of group velocity in a viscous atmosphere. J Geophys Res 116:D12101.  https://doi.org/10.1029/2010JD014987CrossRefGoogle Scholar
  89. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  90. Yeh KC, Liu CH (1974) Acoustic-gravity waves in the upper atmosphere. Rev Geophys 12:193–216.  https://doi.org/10.1029/RG012i002p00193CrossRefGoogle Scholar
  91. Yiğit E, Medvedev AS (2012) Gravity waves in the thermosphere during a sudden stratospheric warming. Geophys Res Lett 39:L21101.  https://doi.org/10.1029/2012GL053812CrossRefGoogle Scholar
  92. Yiğit E, Medvedev AS (2015) Internal wave coupling processes in Earth’s atmosphere. Adv Space Res 55:983–1003.  https://doi.org/10.1016/j.asr.2014.11.020CrossRefGoogle Scholar
  93. Zhang X, Tang L (2015) Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion. Ann Geophys 33:137–142.  https://doi.org/10.5194/angeo-33-137-2015CrossRefGoogle Scholar
  94. Zou C-Z, Qian H, Wang W et al (2014) Recalibration and merging of SSU observations for stratospheric temperature trend studies. J Geophys Res Atmos 119:13180–13205.  https://doi.org/10.1002/2014JD021603CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Atmospheric Physics ASCR, Bocni IIPragueCzech Republic

Personalised recommendations