Recent Dynamic Studies on the Middle Atmosphere at Mid- and Low-Latitudes Using Rayleigh Lidar and Other Technologies

  • Alain HauchecorneEmail author
  • Sergey Khaykin
  • Philippe Keckhut
  • Nahoudha Mzé
  • Guillaume Angot
  • Chantal Claud


The vertical structure of the middle atmosphere (stratosphere and mesosphere) is mainly driven by the absorption of solar radiation by ozone, which is maximum at the stratopause defining the limit between the two layers. However, the meridional structure of the temperature field is far from the radiative equilibrium, especially in the upper mesosphere where the coldest temperatures are reached at the summer pole. This structure can be only explained if we consider the vertical and meridional circulation driven by planetary and gravity wave propagation and breaking. Rayleigh lidars providing time-resolved accurate temperature profiles from the middle stratosphere to the top of mesosphere are very efficient tools to study the characteristics of these waves and their impact on the mean temperature and wind fields. Together with other types of instrument setup in the frame of the European Design Study projects ARISE and -ARISE2, Doppler wind lidars, Mesosphere–Stratosphere–Troposphere (MST) and meteor radars, the IMS (International Monitoring System) infrasound network, airglow imagers and ionospheric sounders, they will contribute to a better knowledge and a better representation of middle atmospheric processes in numerical weather prediction and climate models.



This work was partly supported by ARISE (FP7) and ARISE2 (H2020), Grant agreement 653980 design study projects, funded by the European Union and by Stradivarius project funded by the Agence Nationale de la Recherche, France.


  1. Alexander MJ, Geller M, McLandress C, Polavarapu S, Preusse P, Sassi F, Sato K, Eckermann S, Ern M, Hertzog A, Kawatani YA, Pulido M, Shaw T, Sigmond M, Vincent R, Watanabe S (2010) Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Q J R Meteorol Soc 136:1103–1124. Scholar
  2. Andrews D, Taylor F, McIntyre M (1987) The influence of atmospheric waves on the general circulation of the middle atmosphere [and discussion]. Philos Trans R Soc Lond Ser A Math Phys Sci 323(1575):693–705. Scholar
  3. Angot G, Keckhut P, Hauchecorne A, Claud C (2012) Contribution of stratospheric warmings to temperature trends in the middle atmosphere from the lidar series obtained at Haute-Provence Observatory (44°N). J Geophys Res 117:D21102. Scholar
  4. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meethan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission early results. Bull Am Meteorol Soc 89(3): 313–333. Scholar
  5. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The Quasi-Biennial Oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  6. Belloul B, Hauchecorne A (1997) Horizontal homogeneities in occultation methods: the case of atmospheric gravity waves. Radio Sci 32:469–478CrossRefGoogle Scholar
  7. Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887Google Scholar
  8. Butchart N (2014) The Brewer-Dobson circulation. Rev Geophys 52:157–184. Scholar
  9. Butler AH, Seidel DJ, Hardiman SC, Butchart N, Birner T, Match A (2015) Defining sudden stratospheric warmings. Bull Am Meteorol Soc 96:1913–1928CrossRefGoogle Scholar
  10. Chane Ming F, Molinaro F, Leveau J, Keckhut P, Hauchecorne A (2000) Analysis of gravity waves in the tropical middle atmosphere with lidar using wavelet techniques. Ann Geophys 18:485–498Google Scholar
  11. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20(3):449–469. Scholar
  12. Charney JG, Drazin PG (1961) Propagation of planetary scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109CrossRefGoogle Scholar
  13. Cohen J, Jones J (2011) Tropospheric precursors and stratospheric warmings. J Clim 24:6562–6572. Scholar
  14. Duck TJ, Whiteway JA, Carswell AI (2001) The gravity wave-arctic stratospheric vortex interaction. J Atmos Sci 58(23):3581–3596.<3581:tgwasv>;2CrossRefGoogle Scholar
  15. Faber A, Llamedo P, Schmidt T, de la Torre A, Wickert J (2013) On the determination of gravity wave momentum flux from GPS radio occultation data. Atmos Meas Tech 6:3169–3180. Scholar
  16. Fleming EL, Chandra S, Schoeberl MR, Barnett JJ (1988) Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km. NASA Tech Memo 100697Google Scholar
  17. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41:1003. Scholar
  18. Funatsu B, Claud C, Keckhu P, Hauchecorne A, Leblanc T (2016) Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. J Geophys Res 121(14):8172–8185Google Scholar
  19. Hajj GA, Kursinski ER, Romans LJ, Bertiger WI, Leroy SS (2002) A technical description of atmospheric sounding by GPS occultation. J Atmos Sol-Terr Phys 64:451–469. Scholar
  20. Hauchecorne A, Chanin ML (1980) Density and temperature profiles obtained by lidar between 30 and 70 km. Geophys Res Lett 7:564–568CrossRefGoogle Scholar
  21. Hauchecorne A, Chanin ML (1983) Mid-latitude observations of planetary waves in the middle atmosphere during the winter of 1981–1982. J Geophys Res 88:3843–3849CrossRefGoogle Scholar
  22. Hauchecorne A, Chanin ML, Wilson R (1987) Mesospheric temperature inversion and gravity wave breaking. Geophys Res Lett 14:933–936CrossRefGoogle Scholar
  23. Hauchecorne A, Chanin ML (1988) Planetary waves-mean flow interaction in the middle atmosphere: modelisation and comparison with lidar observations. Ann Geophys 6:409–416Google Scholar
  24. Hauchecorne A, Chanin ML, Keckhut P (1991) Climatology and trends of the middle atmospheric temperature (33–87 km) as seen by Rayleigh lidar above south of France. J Geophys Res 96:15297–15309CrossRefGoogle Scholar
  25. Hauchecorne A, Gonzalez N, Souprayen C, Manson AH, Meek CE, Singer W, Fahrytdinova AN, Hoppe UP, Boska J, Lastovicka J, Scheer J, Reisin ER, Graef H (1994) Gravity wave activity and its relation with prevailing winds during DYANA. J Atmos Terr Phys 56:1765–1778CrossRefGoogle Scholar
  26. Hauchecorne A, Keckhut P, Chanin ML (2006) Interannual variability and long term changes in planetary wave activity in the middle atmosphere observed by lidar. Atmos Chem Phys Discuss 6:11299–11316. Scholar
  27. Hauchecorne A, Keckhut P, Chanin ML (2009) Dynamics and transport in the middle atmosphere. Infrasound monitoring for atmospheric studies, Springer, pp 665–683, Earth and EnvironmentalGoogle Scholar
  28. Hauchecorne A, Bertaux JL, Dalaudier F, Keckhut P, Lemennais P, Bekki S, Marchand M, Lebrun JC, Kyrölä E, Tamminen J, Sofieva V, Fussen D, Vanhellemont F, Fanton d’Andon O, Barrot G, Blanot L, Fehr T, Saavedra de Miguel L (2010) Response of tropical stratospheric O3, NO2 and NO3 to the equatorial Quasi-Biennial Oscillation and to temperature as seen from GOMOS/ENVISAT. Atmos Chem Phys 10:8873–8879CrossRefGoogle Scholar
  29. Kasahara A (1980) Effect of zonal flows on the free oscillations of a barotropic atmosphere. J Atmos Sci 37:917–929CrossRefGoogle Scholar
  30. Khaykin S, Hauchecorne A, Mze N, Keckhut P (2015) Seasonal variation of gravity wave activity at midlatitudes from 7 years of COSMIC GPS and Rayleigh lidar temperature observations. Geophys Res Lett 42(4):1251–1258CrossRefGoogle Scholar
  31. Keckhut P, Hauchecorne A, Chanin ML (1993) A critical review of the data base acquired for the long term surveillance of the middle atmosphere by Rayleigh lidar. J Atmos Ocean Tech 10:850–867CrossRefGoogle Scholar
  32. Keckhut P, Hauchecorne A, Chanin ML (1995) Mid-latitude long-term variability of the middle atmosphere: trends, cyclic and episodic changes. J Geophys Res 100:18887–18897CrossRefGoogle Scholar
  33. Keckhut P, Courcoux Y, Baray J-L, Porteneuve J, Vérèmes H, Hauchecorne A, Dionisi D, Posny F, Cammas J-P, Payen G, Gabarrot F et al (2015a) Introduction to the Maïdo Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters. J Appl Remote Sens 9(1):094099. Scholar
  34. Keckhut P, Funatsu BM, Claud C, Hauchecorne A (2015b) Tidal effects on stratospheric temperature series derived from successive advanced microwave sounding units. Q J R Meteorol Soc 141(687):477–483CrossRefGoogle Scholar
  35. Kursinski ER, Hajj GA, Schofield JT, Linfield RP, Hardy KR (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System. J Geophys Res 102:23429–23465. Scholar
  36. Labitzke K (1981) Stratospheric-mesospheric midwinter disturbances: a summary of observed characteristics. J Geophys Res 86(C10):9665–9678. Scholar
  37. Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910Google Scholar
  38. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez AJ, Lee C-F, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob D et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res 120 (16):8318–8331. Scholar
  39. Li T, Leblanc T, McDermid IS, Wu DL, Dou X, Wang S (2010) Seasonal and interannual variability of gravity wave activity revealed by long-term lidar observations over Mauna Loa Observatory, Hawaii. J Geophys Res 115:D13103. Scholar
  40. Lindzen RS (1981) Turbulence and stress owing to gravity wave and tidal breakdown. J Geophys Res 86(C10):9707–9714. Scholar
  41. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494CrossRefGoogle Scholar
  42. Maury P, Claud C, Manzini E, Hauchecorne A, Keckhut P (2016) Characteristics of stratospheric warming events during Northern winter. J Geophys Res 121:5368–5380. Scholar
  43. Mzé N, Hauchecorne A, Keckhut P, Thétis M (2014) Vertical distribution of gravity wave potential energy from long-term Rayleigh lidar data at a northern middle-latitude site. J Geoph Res: Atmos 119(21):12069–12083. Scholar
  44. Naujokat B (1986) An update of the observed quasi-biennial oscillation of the stratospheric winds over the tropics. J Atmos Sci 43:1873–1877CrossRefGoogle Scholar
  45. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):1468. Scholar
  46. Ramaswamy V et al (2001) Stratospheric temperature trends: observations and model simulations. Rev Geophys 39(1):71–122. Scholar
  47. Randel WJ, Shine KP, Austin J, Barnett J, Claud C, Gillett NP, Keckhut P, Langematz U, Lin R, Long C, Mears C, Miller A, Nash J, Seidel DJ, Thompson DWJ, Wu F, Yoden S (2009) An update of observed stratospheric temperature trends. J Geophys Res 114:D02107. Scholar
  48. Rauthe M, Gerding M, Höffner J, Lübken FJ (2006) Lidar temperature measurements of gravity waves over Kühlungsborn (54 N) from 1 to 105 km: A winter-summer comparison. J Geophys Res 111:D24108. Scholar
  49. Rauthe M, Gerding M, Lübken FJ (2008) Seasonal changes in gravity wave activity measured by lidars at mid-latitudes. Atmos Chem Phys 8:6775–6787. Scholar
  50. Shepherd TG (2000) The middle atmosphere. J Atmos Sol-Terr Phys 62:1587–1601CrossRefGoogle Scholar
  51. Sica RJ, Argall PS (2007) Seasonal and nightly variations of gravity-wave energy density in the middle atmosphere measured by the Purple Crow Lidar. Ann Geophys 25:2139–2145. Scholar
  52. Sivakumar V, Rao PB, Bencherif H (2006) Lidar observations of middle atmospheric gravity wave activity over a low-latitude site (Gadanki, 13.5°N, 79.2°E). Ann Geophys 24:823–834: Scholar
  53. Steiner AK, Hunt D, Ho SP, Kirchengast G, Mannucci AJ, Scherllin-Pirscher B, Gleisner H, von Engeln A, Schmidt T, Ao C, Leroy SS, Kursinski ER, Foelsche U, Gorbunov M, Heise S, Kuo YH, Lauritsen KB, Marquardt C, Rocken C, Schreiner W, Sokolovskiy S, Syndergaard S, Wickert J (2013) Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos Chem Phys 13:1469–1484. Scholar
  54. Whiteway JA, Duck TJ, Donovan DP, Bird JC, Pal SR, Carswell AI (1997) Measurements of gravity wave activity within and around the Arctic stratospheric vortex. Geophys Res Lett 24:1387–1390. Scholar
  55. Wickert J, Schmidt T, Beyerle G, Konig R, Reigber C, Jakowski N (2004) The radio occultation experiment aboard CHAMP: operational data analysis and validation of vertical atmospheric profiles. J Meteorol Soc Jpn 82:381–395. Scholar
  56. Wilson R, Hauchecorne A, Chanin ML (1990) Gravity wave spectra in the middle atmosphere as observed by Rayleigh lidar. Geophys Res Lett 17:1585–1588CrossRefGoogle Scholar
  57. Wilson R, Chanin ML, Hauchecorne A (1991a) Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 1: Case studies. J Geophys Res 96:5153–5167CrossRefGoogle Scholar
  58. Wilson R, Chanin ML, Hauchecorne A (1991b) Gravity waves in the middle atmosphere by Rayleigh Lidar, Part. 2: Climatology. J Geophys Res 96:5169–5183CrossRefGoogle Scholar
  59. Yamashita C, Chu X, Liu HL, Espy PJ, Nott GJ, Huang W (2009) Stratospheric gravity wave characteristics and seasonal variations observed by lidar at the South Pole and Rothera, Antarctica. J Geophys Res 114:D12101. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alain Hauchecorne
    • 1
    Email author
  • Sergey Khaykin
    • 1
  • Philippe Keckhut
    • 1
  • Nahoudha Mzé
    • 1
  • Guillaume Angot
    • 1
  • Chantal Claud
    • 2
  1. 1.Laboratoire atmosphères, milieux et observations spatiales (LATMOS), UVSQ Université Paris-Saclay, Sorbonne Université, CNRSGuyancourtFrance
  2. 2.Laboratoire de Météorologie Dynamique (LMD) CNRS, Ecole PolytechniquePalaiseauFrance

Personalised recommendations