Advertisement

The Study of Sudden Stratospheric Warmings Using Infrasound

  • Pieter SmetsEmail author
  • Jelle Assink
  • Läslo Evers
Chapter

Abstract

Infrasound has a long history of monitoring sudden stratospheric warmings. Several pioneering studies have focused on the various effects of a major warming on the propagation of infrasound. A clear transition has been made from observing anomalous signatures towards the use of these signals to study anomalies in upper atmospheric conditions. Typically, the infrasonic signature of a major warming corresponds to summer-like infrasound characteristics observed in midwinter. More subtile changes occur during a minor warming, recognisable by the presence of a bidirectional stratospheric duct or propagation through a warm stratosphere leading to small shadow zones. A combined analysis of all signal characteristics unravels the general stratospheric structure throughout the life cycle of the warming. A new methodology to evaluate the state of the atmosphere as represented by various weather and climate models is demonstrated. A case study comparing regional volcano infrasound with simulations using various forecast steps indicates significant differences in stratospheric forecast skill, associated with a data assimilation issue during the warming.

Notes

Acknowledgements

This work was performed during the course of the ARISE design studio project: part one (2012–2014) funded by European Union FP7 program (grant number 284387) and part two (2015–2017) funded by the European Commission H2020 program (grant number 653980). Läslo Evers’ contribution is partly funded through a VIDI project from the Netherlands Organisation for Scientific Research (NWO), project number 864.14.005. CTBTO and station operators are thanked for guaranteeing the high quality of the IMS data and products. Figures in this chapter were made with the generic mapping tools (Wessel and Smith 1991).

References

  1. Assink JD, Waxler R, Drob D (2012) On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides. J Geophys Res 117:D01,110+.  https://doi.org/10.1029/2011JD016107.  https://doi.org/10.1029/2011JD016107/abstract
  2. Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res Atmos 118:10,707–10,724.  https://doi.org/10.1002/jgrd.50833Google Scholar
  3. Assink JD, Pichon AL, Blanc E, Kallel M, Khemiri L (2014a) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res 119(14):8659–8683.  https://doi.org/10.1002/2014jd021632Google Scholar
  4. Assink JD, Waxler R, Smets P, Evers LG (2014b) Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J Geophys Res 119:1140–1153.  https://doi.org/10.1002/2013jd021062Google Scholar
  5. Assink JD, Averbuch G, Smets PSM, Evers LG (2016) On the infrasound detected from the 2013 and 2016 DPRK’s underground nuclear tests. Geophys Res Lett 43:3526–3533.  https://doi.org/10.1002/2016gl068497CrossRefGoogle Scholar
  6. Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  7. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294:581–584.  https://doi.org/10.1126/science.1063315CrossRefGoogle Scholar
  8. Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887Google Scholar
  9. Brekhovskikh IM, Goncharov VV, Kurtepov VM, Naugol’nykh KA (1973) The radiation of infrasound into the atmosphere by surface waves in the ocean. Atmos Oceanic Phys 9:899–907Google Scholar
  10. Brekhovskikh LM, Godin OA (1999) Acoustics of layered media II: point sources and bounded beams. Springer series on wave phenomena, vol 10, 2nd edn. Springer, Berlin. http://www.worldcat.org/isbn/9783662038895
  11. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20:449–469.  https://doi.org/10.1175/JCLI3996.1CrossRefGoogle Scholar
  12. Charlton AJ, O’neill A, Lahoz WA, Massacand AC (2004) Sensitivity of tropospheric forecasts to stratospheric initial conditions. QJR Meteorol Soc 130(600):1771–1792.  https://doi.org/10.1256/qj.03.167CrossRefGoogle Scholar
  13. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee YY, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son SW, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118:2494–2505.  https://doi.org/10.1002/jgrd.50125Google Scholar
  14. Charney JG, Drazin PG (1961) Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J Geophys Res 66:83–109.  https://doi.org/10.1029/jz066i001p00083CrossRefGoogle Scholar
  15. Chunchuzov I, Kulichkov S, Perepelkin V, Popov O, Firstov P, Assink JD, Marchetti E (2015) Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. J Geophys Res Atmos 120(17):2015JD023,276–8840.  https://doi.org/10.1002/2015jd023276Google Scholar
  16. Chunchuzov IP, Kulichkov SN, Popov OE, Waxler R, Assink J (2011) Infrasound scattering from atmospheric anisotropic inhomogeneities. Izv Atmos Ocean Phys 47:540–557.  https://doi.org/10.1134/s0001433811050045CrossRefGoogle Scholar
  17. Coy L, Eckermann SD, Hoppel KW, Sassi F (2011) Mesospheric precursors to the major stratospheric sudden warming of 2009: validation and dynamical attribution using a ground-to-edge-of-space data assimilation system. J Adv Model Earth Syst 3(4):M10,002+.  https://doi.org/10.1029/2011ms000067
  18. Dahlman O, Mykkeltveit S, Haak H (2009) The treaty, chapter 4. Springer, Netherlands, Dordrecht, pp 83–98.  https://doi.org/10.1007/978-1-4020-6885-0_4CrossRefGoogle Scholar
  19. De Angelis S, Fee D, Haney M, Schneider D (2012) Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-coupled airwaves. Geophys Res Lett 39:L21,312+.  https://doi.org/10.1029/2012gl053635CrossRefGoogle Scholar
  20. Diamantakis M (2014) Improving ECMWF forecasts of sudden stratospheric warmings. ECMWF Newslett 141:30–36Google Scholar
  21. Donn WL, Rind D (1971) Natural infrasound as an atmospheric probe. Geophys J R Astron Soc 26:111–133.  https://doi.org/10.1111/j.1365-246x.1971.tb03386.xCrossRefGoogle Scholar
  22. Donn WL, Rind D (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172.  https://doi.org/10.1175/1520-0469(1972)029<0156:mattaw>2.0.co;2CrossRefGoogle Scholar
  23. Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE, Huba JD, Klenzing JH (2015) An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Space Sci 2(7):2014EA000,089+.  https://doi.org/10.1002/2014ea000089CrossRefGoogle Scholar
  24. Evers LG, Siegmund P (2009) Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys Res Lett 36:L23,808+.  https://doi.org/10.1029/2009gl041323
  25. Evers LG, van Geyt ARJ, Smets P, Fricke JT (2012) Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones. J Geophys Res 117:D06,120+.  https://doi.org/10.1029/2011jd017014CrossRefGoogle Scholar
  26. Fee D, Steffke A, Garces M (2010) Characterization of the 2008 Kasatochi and Okmok eruptions using remote infrasound arrays. J Geophys Res 115(D2):D00L10+.  https://doi.org/10.1029/2009jd013621
  27. Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garces M, Drob D, Kleinert D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 Sayarim infrasound calibration experiments. J Geophys Res Atmos 118:6122–6143.  https://doi.org/10.1002/jgrd.50398Google Scholar
  28. Fricke JT, Allouche NE, Simons DG, Ruigrok EN, Wapenaar K, Evers LG (2013) Infrasonic interferometry of stratospherically refracted microbaroms—a numerical study. J Acoust Soc Am 134:2660–2668.  https://doi.org/10.1121/1.4819117CrossRefGoogle Scholar
  29. Fricke JT, Evers LG, Smets PSM, Wapenaar K, Simons DG (2014) Infrasonic interferometry applied to microbaroms observed at the large aperture infrasound array in the Netherlands. J Geophys Res 119:9654–9665.  https://doi.org/10.1002/2014jd021663Google Scholar
  30. Gerber EP, Orbe C, Polvani LM (2009) Stratospheric influence on the tropospheric circulation revealed by idealized ensemble forecasts. Geophys Res Lett 36:L24,801+.  https://doi.org/10.1029/2009gl040913
  31. Godin OA (2002) An effective quiescent medium for sound propagating through an inhomogeneous, moving fluid. J Acoust Soc Am 112(4):1269–1275.  https://doi.org/10.1121/1.1504853CrossRefGoogle Scholar
  32. Green DN, Matoza RS, Vergoz J, Le Pichon A (2012) Infrasonic propagation from the 2010 Eyjafjallajökull eruption: investigating the influence of stratospheric solar tides. J Geophys Res 117:D21,202+.  https://doi.org/10.1029/2012jd017988CrossRefGoogle Scholar
  33. Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere in southern California. Bull Am Meteorol Soc 20:192–201CrossRefGoogle Scholar
  34. Hasselmann K (1963) A statistical analysis of the generation of microseisms. Rev Geophys 1:177–210.  https://doi.org/10.1029/rg001i002p00177CrossRefGoogle Scholar
  35. Hedlin MAH, Drob D, Walker K, de Groot-Hedlin C (2010) A study of acoustic propagation from a large bolide in the atmosphere with a dense seismic network. J Geophys Res 115:B11,312+.  https://doi.org/10.1029/2010jb007669
  36. Holton JR (2004) An introduction to dynamic meteorology, 4th edn. Elsevier Academic Press, Oxford. http://www.worldcat.org/isbn/0123540151
  37. Janssen P (2009) The interaction of ocean waves and wind, 1st edn. Cambridge University Press. http://www.worldcat.org/isbn/0521121043
  38. Jung T, Miller MJ, Palmer TN (2010) Diagnosing the origin of extended-range forecast errors. Mon Wea Rev 138(6):2434–2446.  https://doi.org/10.1175/2010mwr3255.1CrossRefGoogle Scholar
  39. Källén E (2008) Special issue with manuscripts related to ESA’s atmospheric dynamics mission/Aeolus. Tellus A: Dyn Meteorol Oceanogr 60(2):189–190.  https://doi.org/10.1111/j.1600-0870.2007.00296.xCrossRefGoogle Scholar
  40. Kodera K, Mukougawa H, Fujii A (2013) Influence of the vertical and zonal propagation of stratospheric planetary waves on tropospheric blockings. J Geophys Res 118:8333–8345.  https://doi.org/10.1002/jgrd.50650Google Scholar
  41. Kulichkov SN, Chunchuzov IP, Popov OI (2010) Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv Atmos Ocean Phys 46:69–77.  https://doi.org/10.1134/S0001433810010093CrossRefGoogle Scholar
  42. Labitzke KG, van Loon H (1999) The stratosphere. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-58541-8CrossRefGoogle Scholar
  43. Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza RS, Le Pichon A, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190:687–701.  https://doi.org/10.1111/j.1365-246x.2012.05518.xCrossRefGoogle Scholar
  44. Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910Google Scholar
  45. Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110:D13,106+.  https://doi.org/10.1029/2004jd005587
  46. Le Pichon A, Ceranna L, Garcés M, Drob D, Millet C (2006) On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J Geophys Res 111.  https://doi.org/10.1029/2005jd006690
  47. Le Pichon A, Vergoz J, Herry P, Ceranna L (2008) Analyzing the detection capability of infrasound arrays in Central Europe. J Geophys Res 113(D12):D12,115+.  https://doi.org/10.1029/2007jd009509
  48. Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the international monitoring system’s infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08,112+.  https://doi.org/10.1029/2008jd010907
  49. Le Pichon A, Blanc E, Hauchecorne A (eds) (2010) Infrasound monitoring for atmospheric studies, 1st edn. Springer Netherlands, Dordrecht. http://www.worldcat.org/isbn/1402095074
  50. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res Atmos 120(16):2015JD023,273–8331.  https://doi.org/10.1002/2015jd023273Google Scholar
  51. Limpasuvan V, Thompson DWJ, Hartmann DL (2004) The life cycle of the northern hemisphere sudden stratospheric warmings. J Clim 17:2584–2596.  https://doi.org/10.1175/1520-0442(2004)017<2584:TLCOTN>2.0.CO;2CrossRefGoogle Scholar
  52. Limpasuvan V, Hartmann DL, Thompson DWJ, Jeev K, Yung YL (2005) Stratosphere-troposphere evolution during polar vortex intensification. J Geophys Res 110.  https://doi.org/10.1029/2005jd006302
  53. Lindzen SR, Chapman S (1969) Atmospheric tides. Space Sci Rev 10:3–188.  https://doi.org/10.1007/BF00171584
  54. Longuet-Higgins MS (1950) A theory of the origin of microseisms. Philos Trans R Soc A 243:1–35.  https://doi.org/10.1098/rsta.1950.0012CrossRefGoogle Scholar
  55. Marchetti E, Ripepe M, Delle Donne D, Genco R, Finizola A, Garaebiti E (2013) Blast waves from violent explosive activity at Yasur Volcano, Vanuatu. Geophys Res Lett 40(22):2013GL057,900+.  https://doi.org/10.1002/2013gl057900CrossRefGoogle Scholar
  56. Matoza RS, Vergoz J, Le Pichon A, Ceranna L, Green DN, Evers LG, Ripepe M, Campus P, Liszka L, Kvaerna T, Kjartansson E, Höskuldsson A (2011) Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April–May 2010. Geophys Res Lett 38(6):L06,308+.  https://doi.org/10.1029/2011gl047019CrossRefGoogle Scholar
  57. Matsuno T (1971) A dynamical model of the stratospheric sudden warming. J Atmos Sci 28:1479–1494.  https://doi.org/10.1175/1520-0469(1971)028<1479:admots>2.0.co;2CrossRefGoogle Scholar
  58. Muench HS (1965) On the dynamics of the wintertime stratosphere circulation. J Atmos Sci 22:349–360.  https://doi.org/10.1175/1520-0469(1965)022<0349:otdotw>2.0.co;2CrossRefGoogle Scholar
  59. Picone JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107(A12):1468+.  https://doi.org/10.1029/2002ja009430CrossRefGoogle Scholar
  60. Pierce AD (1981) Acoustics—an introduction to its physical principles and applications. McGraw-Hill series in mechanical engineering. McGraw-Hill, New York. http://www.worldcat.org/isbn/0883186128
  61. Posmentier ES (1967) A theory of microbaroms. Geophys J R Astron Soc 13.  https://doi.org/10.1111/j.1365-246x.1967.tb02301.xCrossRefGoogle Scholar
  62. Randel W, Udelhofen P, Fleming E, Geller M, Gelman M, Hamilton K, Karoly D, Ortland D, Pawson S, Swinbank R, Wu F, Baldwin M, Chanin ML, Keckhut P, Labitzke K, Remsberg E, Simmons A, Wu D (2004) The SPARC intercomparison of middle-atmosphere climatologies. J Clim 17:986–1003.  https://doi.org/10.1175/1520-0442(2004)017<0986:tsiomc>2.0.co;2CrossRefGoogle Scholar
  63. Revelle DO (2010) Modified ray-mode (phase) theory: understanding counter-wind propagation effects from atmospheric explosions. J Atmos Sol-Terr Phys 72:241–261.  https://doi.org/10.1016/j.jastp.2009.11.017CrossRefGoogle Scholar
  64. Rind D, Donn WL (1975) Further use of natural infrasound as a continuous monitor of the upper atmosphere. J Atmos Sci 32:1694–1704.  https://doi.org/10.1175/1520-0469(1975)032<1694:fuonia>2.0.co;2CrossRefGoogle Scholar
  65. Rind D, Donn WL, Dede E (1973) Upper Air Wind Speeds Calculated from Observations of Natural Infrasound. J Atmos Sci 30:1726–1729.  https://doi.org/10.1175/1520-0469(1973)030<1726:uawscf>2.0.co;2CrossRefGoogle Scholar
  66. Rind DH, Donn WL (1978) Infrasound observations of variability during stratospheric warmings. J Atmos Sci 35:546–553.  https://doi.org/10.1175/1520-0469(1978)035<0546:ioovds>2.0.co;2CrossRefGoogle Scholar
  67. Roff G, Thompson DWJ, Hendon H (2011) Does increasing model stratospheric resolution improve extended-range forecast skill? Geophys Res Lett 38(5):L05,809+.  https://doi.org/10.1029/2010gl046515CrossRefGoogle Scholar
  68. Seibert G (2006) The history of sounding rockets and their contribution to European Space Research. ESA Publications. http://www.worldcat.org/isbn/9290925507
  69. Shaw TA, Shepherd TG (2008) Raising the roof. Nat Geosci 1:12–13.  https://doi.org/10.1038/ngeo.2007.53CrossRefGoogle Scholar
  70. Sigmond M, Scinocca JF, Kharin VV, Shepherd TG (2013) Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat Geosci 6:98–102.  https://doi.org/10.1038/ngeo1698CrossRefGoogle Scholar
  71. Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119:12,084–12,099.  https://doi.org/10.1002/2014jd021905Google Scholar
  72. Smets PSM, Evers LG, Charlton-Perez AJ, Lee CF, Harrison RG (2014) Roadmap on the use of ARISE data for weather and climate monitoring in Europe—D5.5. Technical report, Atmospheric dynamics Research InfraStructure in Europe–ARISE–project, FP7 Grant Agreement nr 284387Google Scholar
  73. Smets PSM, Evers LG, Näsholm SP, Gibbons SJ (2015) Probabilistic infrasound propagation using realistic atmospheric perturbations. Geophys Res Lett 42(15):2015GL064,992–6517.  https://doi.org/10.1002/2015gl064992CrossRefGoogle Scholar
  74. Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res Atmos 121(9):2015JD024,251–4650.  https://doi.org/10.1002/2015jd024251Google Scholar
  75. Stopa JE, Cheung KF, Garcés MA, Badger N (2012) Atmospheric infrasound from nonlinear wave interactions during Hurricanes Felicia and Neki of 2009. J Geophys Res 117.  https://doi.org/10.1029/2012jc008257CrossRefGoogle Scholar
  76. Straume AG, Elfving A, Wernham D, Culoma A, Mondin L, de Bruin F, Kanitz T, Schuettemeyer D, Buscaglione F, Dehn A (2016) ESA’s Spaceborne Lidar Mission ADM-Aeolus; recent achievements and preparations for launch. EPJ Web Conf 119:01,001+.  https://doi.org/10.1051/epjconf/201611901001CrossRefGoogle Scholar
  77. Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115:1012–1032.  https://doi.org/10.1121/1.1631937CrossRefGoogle Scholar
  78. Tailpied D, Le Pichon A, Marchetti E, Assink J, Vergniolle S (2016) Assessing and optimizing the performance of infrasound networks to monitor volcanic eruptions. Geophys J Int 208(1):437–448.  https://doi.org/10.1093/gji/ggw400CrossRefGoogle Scholar
  79. Tripathi OP, Baldwin M, Charlton-Perez A, Charron M, Eckermann SD, Gerber E, Harrison RG, Jackson DR, Kim BM, Kuroda Y, Lang A, Mahmood S, Mizuta R, Roff G, Sigmond M, Son SW (2014) The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. QJR Meteorol Soc 141(689).  https://doi.org/10.1002/qj.2432CrossRefGoogle Scholar
  80. Tripathi OP, Charlton-Perez A, Sigmond M, Vitart F (2015) Enhanced long-range forecast skill in boreal winter following stratospheric strong vortex conditions. Environ Res Lett 10(10):104,007+.  https://doi.org/10.1088/1748-9326/10/10/104007CrossRefGoogle Scholar
  81. Walker KT (2012) Evaluating the opposing wave interaction hypothesis for the generation of microbaroms in the eastern North Pacific. J Geophys Res 117:C12,016+.  https://doi.org/10.1029/2012jc008409CrossRefGoogle Scholar
  82. Walker KT, Hedlin MAH (2009) A review of wind-noise reduction methodologies. Infrasound monitoring for atmospheric studies, chapter 5. Springer, Netherlands, Dordrecht, pp 141–182.  https://doi.org/10.1007/978-1-4020-9508-5_5Google Scholar
  83. Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:2651–2664.  https://doi.org/10.1121/1.2191607CrossRefGoogle Scholar
  84. Waxler R, Gilbert K, Talmadge C, Hetzer C (2007) The effects of the finite depth of the ocean on microbarom signals. In: 8th international conference on theoretical and computational acoustics (ICTCA). European Acoustics Association (EAA), Crete, GreeceGoogle Scholar
  85. Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans AGU 72:441–446.  https://doi.org/10.1029/90eo00319CrossRefGoogle Scholar
  86. Whitaker RW, Mutschlecner JP (2008) A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes. J Geophys Res 113:D08,117+.  https://doi.org/10.1029/2007jd008852
  87. WMO (2013) Guide to the global observing system. WMO-No. 488, World Meteorological Organization, Geneva, Switzerland. http://www.worldcat.org/isbn/9789263104885

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.R&D Department of Seismology and AcousticsRoyal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  2. 2.Faculty of Civil Engineering and Geosciences, Department of Geoscience and EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations