Advertisement

Advances in Infrasonic Remote Sensing Methods

  • Jelle AssinkEmail author
  • Pieter Smets
  • Omar Marcillo
  • Cornelis Weemstra
  • Jean-Marie Lalande
  • Roger Waxler
  • Läslo Evers
Chapter

Abstract

Infrasound recordings can be used as input to inversion procedures to delineate the vertical structure of temperature and wind in a range of altitudes where ground-based or satellite measurements are rare and where fine-scale atmospheric structures are not resolved by the current atmospheric specifications. As infrasound is measured worldwide, this allows for a remote sensing technique that can be applied globally. This chapter provides an overview of recently developed infrasonic remote sensing methods. The methods range from linearized inversions to direct search methods as well as interferometric techniques for atmospheric infrasound. The evaluation of numerical weather prediction (NWP) products shows the added value of infrasound, e.g., during sudden stratospheric warming (SSW) and equinox periods. The potential transition toward assimilation of infrasound in numerical weather prediction models is discussed.

Keywords

Tomography Inversion Remote sensing Interferometry Evaluation Data assimilation Numerical weather prediction SSW Mesosphere and lower thermosphere 

Notes

Acknowledgements

This work was partly performed during the course of the ARISE design study project: part one (2012–2014) funded by European Union FP7 program (grant number 284387) and part two (2015–2017) funded by the European Commission H2020 program (grant number 653980). L.E.’s contribution is funded through a VIDI project from the Dutch Science Foundation (NWO), project number 864.14.005. The authors thank the CTBTO and station operators for the high quality of IMS data and products and would like to acknowledge the Acoustic Surveillance for Hazardous Eruptions (ASHE) project (Garcés et al. 2007).

References

  1. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics, 1st edn. Academic PressGoogle Scholar
  2. Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res 112(D23110).  https://doi.org/10.1029/2007JD008462
  3. Arrowsmith S, Marcillo O, Drob DP (2013) A framework for estimating stratospheric wind speeds from unknown sources and application to the 2010 December 25 bolide. Geophys J Int 195(1).  https://doi.org/10.1093/gji/ggt228CrossRefGoogle Scholar
  4. Assink JD, Waxler R, Frazier W, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res: Atmos 118(19):10,707–10,724Google Scholar
  5. Assink JD, Pichon AL, Blanc E, Kallel M, Khemiri L (2014a) Evaluation of wind and temperature profiles from ecmwf analysis on two hemispheres using volcanic infrasound. J Geophys Res: Atmos 119(14):8659–8683Google Scholar
  6. Assink JD, Waxler R, Smets P, Evers L (2014b) Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J Geophys Res: Atmos 119(3):1140–1153Google Scholar
  7. Assink JD, Waxler R, Drob DP (2012) On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides. J Geophys Res 117.  https://doi.org/10.1029/2011JD016107CrossRefGoogle Scholar
  8. Assink JD, Waxler R, Velea D (2017) A wide-angle high mach number modal expansion for infrasound propagation. J Acoust Soc AmGoogle Scholar
  9. Bertin M, Millet C, Bouche D (2014) A low-order reduced model for the long range propagation of infrasounds in the atmosphere. J Acoust Soc Am 136(1):37–52.  https://doi.org/10.1121/1.4883388CrossRefGoogle Scholar
  10. Blom PS, Marcillo OE (2017) An optimal parametrization framework for infrasonic tomography of the stratospheric winds using non-local sources. Geophys J Int 208(3):1557.  https://doi.org/10.1093/gji/ggw449CrossRefGoogle Scholar
  11. Brekhovskikh LM, Godin O (1999) Acoustics of layered media II: point sources and bounded beams. Springer, Heidelberg, Germany, p 524CrossRefGoogle Scholar
  12. Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. method. Geophys Res Lett 22.  https://doi.org/10.1029/95GL00468CrossRefGoogle Scholar
  13. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20:449–469CrossRefGoogle Scholar
  14. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee YY, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son SW, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505.  https://doi.org/10.1002/jgrd.50125Google Scholar
  15. Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590Google Scholar
  16. Chunchuzov I, Kulichkov S, Perepelkin V, Popov O, Firstov P, Assink J, Marchetti E (2015) Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. J Geophys Res: Atmos 120(17):8828–8840Google Scholar
  17. Donn WL, Rind DH (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172CrossRefGoogle Scholar
  18. Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. J Geophys Res 108(4680)Google Scholar
  19. Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Hays P, Niciejewski RJ, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Brien MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113(A12304).  https://doi.org/10.1029/2008JA013668CrossRefGoogle Scholar
  20. Drob DP, Meier RR, Picone JM, Garcés M (2010) Inversion of infrasound signals for passive atmospheric remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 24. Springer, New York, pp 701–732Google Scholar
  21. Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity-wave fields for long-range infrasound propagation calculations. J Geophys Res 118.  https://doi.org/10.1029/2012JD018077Google Scholar
  22. Duvall T, Jeffferies S, Harvey J, Pomerantz M (1993) Time-distance helioseismology. Nature 362(6419):430–432CrossRefGoogle Scholar
  23. Evers LG, Siegmund P (2009) Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys Res Lett 36:L23808.  https://doi.org/10.1029/2009GL041323
  24. Evers LG, Wapenaar K, Heaney KD, Snellen M (2017) Deep ocean sound speed characteristics passively derived from the ambient acoustic noise field. Geophys J Int.  https://doi.org/10.1093/gji/ggx061CrossRefGoogle Scholar
  25. Fricke JT, Evers LG, Smets PSM, Wapenaar K, Simons DG (2014) Infrasonic interferometry applied to microbaroms observed at the large aperture infrasound array in the netherlands. J Geophys Res 119.  https://doi.org/10.1002/2014JD021663Google Scholar
  26. Fujiwhara S (1916) On the abnormal propagation of sound waves in the atmosphere. Monthly Weather Rev 44(8):436–439.  https://doi.org/10.1175/1520-0493(1916)44<436:OTAPOS>2.0.CO;2CrossRefGoogle Scholar
  27. Garcés M, Fee D, McCormack D, Servranckx R, Bass H, Hetzer C, Hedlin M, Matoza R, Yepes H (2007) Prototype ASHE volcano monitoring system captures the acoustic fingerprint of stratospheric ash injection. Inframatics 3Google Scholar
  28. Garcés MA, Willis M, Hetzer C, Le Pichon A, Drob DP (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31:l19304.  https://doi.org/10.1029/2004GL020696.
  29. Gibbons SJ et al (2015) The European arctic: a laboratory for seismoacoustic studies. Seismol Res Lett 86(3)Google Scholar
  30. Godin OA (2002) An effective quiescent medium for sound propagating through an inhomogeneous, moving fluid. J Acoust Soc Am 112(4):1269–1275CrossRefGoogle Scholar
  31. Godin OA (2006) Recovering the acoustic greens function from ambient noise cross correlation in an inhomogeneous moving medium. Phys Rev Lett 97(5):054,301Google Scholar
  32. Godin OA (2014) Dissipation of acoustic-gravity waves: an asymptotic approach. J Acoust Soc Am 136(EL411):411–417.  https://doi.org/10.1121/1.4902426CrossRefGoogle Scholar
  33. Godin OA, Zabotin NA, Goncharov VV (2010) Ocean tomography with acoustic daylight. Geophys Res Lett 37(13):l13605CrossRefGoogle Scholar
  34. Haney MM (2009) Infrasonic ambient noise interferometry from correlations of microbaroms. Geophys Res Lett 36(19):L19808.  https://doi.org/10.1029/2009GL040179
  35. Kulichkov S (2002) Nonlinear acoustic phenomena in atmosphere. In: Nonlinear acoustics at the beginning of the 21st century, 16th international symposium on nonlinear acoustics (ISNA Moscow)Google Scholar
  36. Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 16. Springer, New York, USA, pp 511–540Google Scholar
  37. Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza R, Pichon AL, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190.  https://doi.org/10.1111/j.1365-246X.2012.05518.xCrossRefGoogle Scholar
  38. Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res: Atmos 117(D6):D06102.  https://doi.org/10.1029/2011JD016684CrossRefGoogle Scholar
  39. Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton GJ (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 889–910Google Scholar
  40. Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res: Atmos 110:d13106CrossRefGoogle Scholar
  41. Le Pichon A, Blanc E, Drob DP (2005) Probing high-altitude winds using infrasound. J Geophys Res 110Google Scholar
  42. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res: Atmos 120:8318–8331Google Scholar
  43. Lingevitch J, Collins M, Siegmann W (1999) Parabolic equations for gravity and acousto-gravity waves. J Acoust Soc Am 105(6):3049–3056CrossRefGoogle Scholar
  44. Lobkis OI, Weaver RL (2001) On the emergence of the greens function in the correlations of a diffuse field. J Acoust Soc Am 110(6):3011–3017.  https://doi.org/10.1121/1.1417528CrossRefGoogle Scholar
  45. Lonzaga JB, Waxler R, Assink JD, Talmadge C (2015) Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory. Geophys J Int 200:1347–1361.  https://doi.org/10.1093/gji/ggu479CrossRefGoogle Scholar
  46. Manson AH, Meek C, Koshyk J, Franke S, Fritts D, Riggin D, Hall C, Hocking W, MacDougall J, Igarashi K, Vincent R (2002) Gravity wave activity and dynamical effects in the middle atmosphere (60–90 km): observations from an MF/MLT radar network, and results from the Canadian Middle Atmosphere Model (CMAM). J Atmos Solar-Terr Phys 64(2):65–90CrossRefGoogle Scholar
  47. Marcillo O, Johnson JB (2010) Tracking near-surface atmospheric conditions using an infrasound network. J Acoust Soc Am 128(1):EL14–EL19.  https://doi.org/10.1121/1.3442725CrossRefGoogle Scholar
  48. Marcillo O, Arrowsmith S, Whitaker R, Morton E, Scott Phillips W (2014) Extracting changes in air temperature using acoustic coda phase delays. J Acoust Soc Am 136(4):EL309–EL314CrossRefGoogle Scholar
  49. Marcillo O, Arrowsmith S, Blom P, Jones K (2015) On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. J Geophys Res: Atmos 120(19):9855–9868Google Scholar
  50. Melton BS, Bailey LF (1957) Multiple signal correlators. Geophysics 22(3):565–588CrossRefGoogle Scholar
  51. Picone JM, Hedin A, Drob D, Aikin A (2002) NRL MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107.  https://doi.org/10.1029/2002JA009430CrossRefGoogle Scholar
  52. Pilger C, Ceranna L (2017) The influence of periodic wind turbine noise on infrasound array measurements. J Sound Vib 388:188–200CrossRefGoogle Scholar
  53. Randel W, Udelhofen P, Fleming E, Geller M, Gelman M, Hamilton K, Karoly D, Ortland D, Pawson S, Swinbank R, Wu F, Baldwin M, Chanin ML, Keckhut P, Labitzke K, Remsberg E, Simmons A, Wu D (2004) The SPARC intercomparison of middle-atmosphere climatologies. J Clim 17(5):986–1003CrossRefGoogle Scholar
  54. Rind DH, Donn WL, Dede E (1973) Upper air wind speeds calculated from observations of natural infrasound. J Atmos Sci 30:1726–1729CrossRefGoogle Scholar
  55. Roux P, Kuperman W (2004) Extracting coherent wave fronts from acoustic ambient noise in the ocean. J Acoust Soc Am 116(4):1995–2003CrossRefGoogle Scholar
  56. Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3).  https://doi.org/10.1029/2000RG000089
  57. Seats KJ, Lawrence JF, Prieto GA (2012) Improved ambient noise correlation functions using Welchs method. Geophys J Int 188(2):513.  https://doi.org/10.1111/j.1365-246X.2011.05263.xCrossRefGoogle Scholar
  58. Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31(7)CrossRefGoogle Scholar
  59. Shaw TA, Shepherd TG (2008) Raising the roof. Nat Geosci 1:12–13.  https://doi.org/10.1038/ngeo.2007.53CrossRefGoogle Scholar
  60. Smart E, Flinn EA (1971) Fast frequency-wavenumber analysis and Fisher signal detection in real-time infrasonic array data processing. Geophys J R Astron Soc 26:279–284CrossRefGoogle Scholar
  61. Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res: Atmos 119(21):12,084–12,099Google Scholar
  62. Smets PSM, Evers LG, Charlon-Perez AJ, Lee CF, Harrison RG (2014) Roadmap on the use of arise data for weather and climate monitoring in Europe. Technical report D5.5, Atmospheric dynamics research InfraStructure in Europe - ARISE - project, FP7 Grant Agreement nr 284387Google Scholar
  63. Smets PSM, Evers LG, Näsholm SP, Gibbons SJ (2015) Probabilistic infrasound propagation using realistic atmospheric perturbations. Geophys Res Lett 42:6510–6517.  https://doi.org/10.1002/2015GL064992CrossRefGoogle Scholar
  64. Smets P, Assink J, Läslo GE (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755Google Scholar
  65. Smets PSM, Assink J, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res: Atmos 121(9):4637–4650Google Scholar
  66. Snieder R (2004) Extracting the greens function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69(4):046,610Google Scholar
  67. Snieder R (2006) The theory of coda wave interferometry. Pure Appl Geophys 163(2):455–473CrossRefGoogle Scholar
  68. Snieder R, Trampert J (1999) Inverse problems in geophysics. In: Wirgin A (ed) Wavefield inversion. Springer, New York, pp 119–190Google Scholar
  69. Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115(3):1012–1030CrossRefGoogle Scholar
  70. Szuberla C, Olson J (2004) Uncertainties associated with parameter estimation in atmospheric infrasound arrays. J Acoust Soc Am 115(1)CrossRefGoogle Scholar
  71. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied MathematicsGoogle Scholar
  72. Trampert J, Leveque JJ (1990) Simultaneous iterative reconstruction technique: Physical interpretation based on the generalized least squares solution. J Geophys Res: Solid Earth 95(B8):12,553–12,559.  https://doi.org/10.1029/JB095iB08p12553CrossRefGoogle Scholar
  73. Wapenaar K, Fokkema J (2006) Greens function representations for seismic interferometry. Geophysics 71(4):SI33–SI46CrossRefGoogle Scholar
  74. Waxler R, Gilbert K (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119(5):2651–2661CrossRefGoogle Scholar
  75. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  76. Waxler R, Assink JD, Velea D (2017) Modal expansions for infrasound propagation and their consequences for ground-to-ground propagation. J Acoust Soc AmGoogle Scholar
  77. Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13):134,301Google Scholar
  78. Weemstra C, Boschi L, Goertz A, Artman B (2012) Seismic attenuation from recordings of ambient noise. GeophysicsGoogle Scholar
  79. Weemstra C, Snieder R, Boschi L (2015) On the estimation of attenuation from the ambient seismic field: inferences from distributions of isotropic point scatterers. Geophys J Int 203(2):1054CrossRefGoogle Scholar
  80. Whipple F (1926) Audibility of explosions and the constitution of the upper atmosphere. Nature 118:309–313CrossRefGoogle Scholar
  81. Zwolak JW, Boggs P, Watson LT (2005) ODRPACK95; a weighted orthogonal distance regression code with bound constraints. Technical report TR-04-31, Computer Science, Virginia Tech., U.S.AGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jelle Assink
    • 1
    Email author
  • Pieter Smets
    • 1
    • 2
  • Omar Marcillo
    • 3
  • Cornelis Weemstra
    • 2
  • Jean-Marie Lalande
    • 4
  • Roger Waxler
    • 5
  • Läslo Evers
    • 1
    • 2
  1. 1.Seismology and Acoustics, Royal Netherlands Meteorological Institute (KNMI)De BiltThe Netherlands
  2. 2.Faculty of Civil Engineering and Geosciences, Department of Geoscience and EngineeringDelft University of TechnologyDelftThe Netherlands
  3. 3.EES-17, Geophysics Group Los Alamos National LaboratoryLos AlamosUnited States
  4. 4.IMS (Univ. Bordeaux – CNRS – BINP)Talence CedexFrance
  5. 5.National Center for Physical AcousticsUniversity of Mississippi UniversityOxfordUSA

Personalised recommendations