Skip to main content

Advances in Infrasonic Remote Sensing Methods

  • Chapter
  • First Online:
Infrasound Monitoring for Atmospheric Studies

Abstract

Infrasound recordings can be used as input to inversion procedures to delineate the vertical structure of temperature and wind in a range of altitudes where ground-based or satellite measurements are rare and where fine-scale atmospheric structures are not resolved by the current atmospheric specifications. As infrasound is measured worldwide, this allows for a remote sensing technique that can be applied globally. This chapter provides an overview of recently developed infrasonic remote sensing methods. The methods range from linearized inversions to direct search methods as well as interferometric techniques for atmospheric infrasound. The evaluation of numerical weather prediction (NWP) products shows the added value of infrasound, e.g., during sudden stratospheric warming (SSW) and equinox periods. The potential transition toward assimilation of infrasound in numerical weather prediction models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics, 1st edn. Academic Press

    Google Scholar 

  • Antier K, Le Pichon A, Vergniolle S, Zielinski C, Lardy M (2007) Multiyear validation of the NRL-G2S wind fields using infrasound from Yasur. J Geophys Res 112(D23110). https://doi.org/10.1029/2007JD008462

  • Arrowsmith S, Marcillo O, Drob DP (2013) A framework for estimating stratospheric wind speeds from unknown sources and application to the 2010 December 25 bolide. Geophys J Int 195(1). https://doi.org/10.1093/gji/ggt228

    Article  Google Scholar 

  • Assink JD, Waxler R, Frazier W, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res: Atmos 118(19):10,707–10,724

    Google Scholar 

  • Assink JD, Pichon AL, Blanc E, Kallel M, Khemiri L (2014a) Evaluation of wind and temperature profiles from ecmwf analysis on two hemispheres using volcanic infrasound. J Geophys Res: Atmos 119(14):8659–8683

    Google Scholar 

  • Assink JD, Waxler R, Smets P, Evers L (2014b) Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J Geophys Res: Atmos 119(3):1140–1153

    Google Scholar 

  • Assink JD, Waxler R, Drob DP (2012) On the sensitivity of infrasonic traveltimes in the equatorial region to the atmospheric tides. J Geophys Res 117. https://doi.org/10.1029/2011JD016107

    Article  Google Scholar 

  • Assink JD, Waxler R, Velea D (2017) A wide-angle high mach number modal expansion for infrasound propagation. J Acoust Soc Am

    Google Scholar 

  • Bertin M, Millet C, Bouche D (2014) A low-order reduced model for the long range propagation of infrasounds in the atmosphere. J Acoust Soc Am 136(1):37–52. https://doi.org/10.1121/1.4883388

    Article  Google Scholar 

  • Blom PS, Marcillo OE (2017) An optimal parametrization framework for infrasonic tomography of the stratospheric winds using non-local sources. Geophys J Int 208(3):1557. https://doi.org/10.1093/gji/ggw449

    Article  Google Scholar 

  • Brekhovskikh LM, Godin O (1999) Acoustics of layered media II: point sources and bounded beams. Springer, Heidelberg, Germany, p 524

    Book  Google Scholar 

  • Cansi Y (1995) An automatic seismic event processing for detection and location: the P.M.C.C. method. Geophys Res Lett 22. https://doi.org/10.1029/95GL00468

    Article  Google Scholar 

  • Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J Clim 20:449–469

    Article  Google Scholar 

  • Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee YY, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son SW, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505. https://doi.org/10.1002/jgrd.50125

    Google Scholar 

  • Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590

    Google Scholar 

  • Chunchuzov I, Kulichkov S, Perepelkin V, Popov O, Firstov P, Assink J, Marchetti E (2015) Study of the wind velocity-layered structure in the stratosphere, mesosphere, and lower thermosphere by using infrasound probing of the atmosphere. J Geophys Res: Atmos 120(17):8828–8840

    Google Scholar 

  • Donn WL, Rind DH (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172

    Article  Google Scholar 

  • Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. J Geophys Res 108(4680)

    Google Scholar 

  • Drob DP, Emmert JT, Crowley G, Picone JM, Shepherd GG, Skinner W, Hays P, Niciejewski RJ, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Brien MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113(A12304). https://doi.org/10.1029/2008JA013668

    Article  Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garcés M (2010) Inversion of infrasound signals for passive atmospheric remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 24. Springer, New York, pp 701–732

    Google Scholar 

  • Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity-wave fields for long-range infrasound propagation calculations. J Geophys Res 118. https://doi.org/10.1029/2012JD018077

    Google Scholar 

  • Duvall T, Jeffferies S, Harvey J, Pomerantz M (1993) Time-distance helioseismology. Nature 362(6419):430–432

    Article  Google Scholar 

  • Evers LG, Siegmund P (2009) Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys Res Lett 36:L23808. https://doi.org/10.1029/2009GL041323

  • Evers LG, Wapenaar K, Heaney KD, Snellen M (2017) Deep ocean sound speed characteristics passively derived from the ambient acoustic noise field. Geophys J Int. https://doi.org/10.1093/gji/ggx061

    Article  Google Scholar 

  • Fricke JT, Evers LG, Smets PSM, Wapenaar K, Simons DG (2014) Infrasonic interferometry applied to microbaroms observed at the large aperture infrasound array in the netherlands. J Geophys Res 119. https://doi.org/10.1002/2014JD021663

    Google Scholar 

  • Fujiwhara S (1916) On the abnormal propagation of sound waves in the atmosphere. Monthly Weather Rev 44(8):436–439. https://doi.org/10.1175/1520-0493(1916)44<436:OTAPOS>2.0.CO;2

    Article  Google Scholar 

  • Garcés M, Fee D, McCormack D, Servranckx R, Bass H, Hetzer C, Hedlin M, Matoza R, Yepes H (2007) Prototype ASHE volcano monitoring system captures the acoustic fingerprint of stratospheric ash injection. Inframatics 3

    Google Scholar 

  • Garcés MA, Willis M, Hetzer C, Le Pichon A, Drob DP (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31:l19304. https://doi.org/10.1029/2004GL020696.

  • Gibbons SJ et al (2015) The European arctic: a laboratory for seismoacoustic studies. Seismol Res Lett 86(3)

    Google Scholar 

  • Godin OA (2002) An effective quiescent medium for sound propagating through an inhomogeneous, moving fluid. J Acoust Soc Am 112(4):1269–1275

    Article  Google Scholar 

  • Godin OA (2006) Recovering the acoustic greens function from ambient noise cross correlation in an inhomogeneous moving medium. Phys Rev Lett 97(5):054,301

    Google Scholar 

  • Godin OA (2014) Dissipation of acoustic-gravity waves: an asymptotic approach. J Acoust Soc Am 136(EL411):411–417. https://doi.org/10.1121/1.4902426

    Article  Google Scholar 

  • Godin OA, Zabotin NA, Goncharov VV (2010) Ocean tomography with acoustic daylight. Geophys Res Lett 37(13):l13605

    Article  Google Scholar 

  • Haney MM (2009) Infrasonic ambient noise interferometry from correlations of microbaroms. Geophys Res Lett 36(19):L19808. https://doi.org/10.1029/2009GL040179

  • Kulichkov S (2002) Nonlinear acoustic phenomena in atmosphere. In: Nonlinear acoustics at the beginning of the 21st century, 16th international symposium on nonlinear acoustics (ISNA Moscow)

    Google Scholar 

  • Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chapter 16. Springer, New York, USA, pp 511–540

    Google Scholar 

  • Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza R, Pichon AL, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190. https://doi.org/10.1111/j.1365-246X.2012.05518.x

    Article  Google Scholar 

  • Landès M, Ceranna L, Le Pichon A, Matoza RS (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res: Atmos 117(D6):D06102. https://doi.org/10.1029/2011JD016684

    Article  Google Scholar 

  • Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton GJ (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 889–910

    Google Scholar 

  • Le Pichon A, Blanc E, Drob D, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res: Atmos 110:d13106

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob DP (2005) Probing high-altitude winds using infrasound. J Geophys Res 110

    Google Scholar 

  • Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross O, Claud C (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res: Atmos 120:8318–8331

    Google Scholar 

  • Lingevitch J, Collins M, Siegmann W (1999) Parabolic equations for gravity and acousto-gravity waves. J Acoust Soc Am 105(6):3049–3056

    Article  Google Scholar 

  • Lobkis OI, Weaver RL (2001) On the emergence of the greens function in the correlations of a diffuse field. J Acoust Soc Am 110(6):3011–3017. https://doi.org/10.1121/1.1417528

    Article  Google Scholar 

  • Lonzaga JB, Waxler R, Assink JD, Talmadge C (2015) Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory. Geophys J Int 200:1347–1361. https://doi.org/10.1093/gji/ggu479

    Article  Google Scholar 

  • Manson AH, Meek C, Koshyk J, Franke S, Fritts D, Riggin D, Hall C, Hocking W, MacDougall J, Igarashi K, Vincent R (2002) Gravity wave activity and dynamical effects in the middle atmosphere (60–90 km): observations from an MF/MLT radar network, and results from the Canadian Middle Atmosphere Model (CMAM). J Atmos Solar-Terr Phys 64(2):65–90

    Article  Google Scholar 

  • Marcillo O, Johnson JB (2010) Tracking near-surface atmospheric conditions using an infrasound network. J Acoust Soc Am 128(1):EL14–EL19. https://doi.org/10.1121/1.3442725

    Article  Google Scholar 

  • Marcillo O, Arrowsmith S, Whitaker R, Morton E, Scott Phillips W (2014) Extracting changes in air temperature using acoustic coda phase delays. J Acoust Soc Am 136(4):EL309–EL314

    Article  Google Scholar 

  • Marcillo O, Arrowsmith S, Blom P, Jones K (2015) On infrasound generated by wind farms and its propagation in low-altitude tropospheric waveguides. J Geophys Res: Atmos 120(19):9855–9868

    Google Scholar 

  • Melton BS, Bailey LF (1957) Multiple signal correlators. Geophysics 22(3):565–588

    Article  Google Scholar 

  • Picone JM, Hedin A, Drob D, Aikin A (2002) NRL MSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J Geophys Res 107. https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  • Pilger C, Ceranna L (2017) The influence of periodic wind turbine noise on infrasound array measurements. J Sound Vib 388:188–200

    Article  Google Scholar 

  • Randel W, Udelhofen P, Fleming E, Geller M, Gelman M, Hamilton K, Karoly D, Ortland D, Pawson S, Swinbank R, Wu F, Baldwin M, Chanin ML, Keckhut P, Labitzke K, Remsberg E, Simmons A, Wu D (2004) The SPARC intercomparison of middle-atmosphere climatologies. J Clim 17(5):986–1003

    Article  Google Scholar 

  • Rind DH, Donn WL, Dede E (1973) Upper air wind speeds calculated from observations of natural infrasound. J Atmos Sci 30:1726–1729

    Article  Google Scholar 

  • Roux P, Kuperman W (2004) Extracting coherent wave fronts from acoustic ambient noise in the ocean. J Acoust Soc Am 116(4):1995–2003

    Article  Google Scholar 

  • Sambridge M, Mosegaard K (2002) Monte Carlo methods in geophysical inverse problems. Rev Geophys 40(3). https://doi.org/10.1029/2000RG000089

  • Seats KJ, Lawrence JF, Prieto GA (2012) Improved ambient noise correlation functions using Welchs method. Geophys J Int 188(2):513. https://doi.org/10.1111/j.1365-246X.2011.05263.x

    Article  Google Scholar 

  • Shapiro NM, Campillo M (2004) Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett 31(7)

    Article  Google Scholar 

  • Shaw TA, Shepherd TG (2008) Raising the roof. Nat Geosci 1:12–13. https://doi.org/10.1038/ngeo.2007.53

    Article  Google Scholar 

  • Smart E, Flinn EA (1971) Fast frequency-wavenumber analysis and Fisher signal detection in real-time infrasonic array data processing. Geophys J R Astron Soc 26:279–284

    Article  Google Scholar 

  • Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res: Atmos 119(21):12,084–12,099

    Google Scholar 

  • Smets PSM, Evers LG, Charlon-Perez AJ, Lee CF, Harrison RG (2014) Roadmap on the use of arise data for weather and climate monitoring in Europe. Technical report D5.5, Atmospheric dynamics research InfraStructure in Europe - ARISE - project, FP7 Grant Agreement nr 284387

    Google Scholar 

  • Smets PSM, Evers LG, Näsholm SP, Gibbons SJ (2015) Probabilistic infrasound propagation using realistic atmospheric perturbations. Geophys Res Lett 42:6510–6517. https://doi.org/10.1002/2015GL064992

    Article  Google Scholar 

  • Smets P, Assink J, Läslo GE (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755

    Google Scholar 

  • Smets PSM, Assink J, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res: Atmos 121(9):4637–4650

    Google Scholar 

  • Snieder R (2004) Extracting the greens function from the correlation of coda waves: a derivation based on stationary phase. Phys Rev E 69(4):046,610

    Google Scholar 

  • Snieder R (2006) The theory of coda wave interferometry. Pure Appl Geophys 163(2):455–473

    Article  Google Scholar 

  • Snieder R, Trampert J (1999) Inverse problems in geophysics. In: Wirgin A (ed) Wavefield inversion. Springer, New York, pp 119–190

    Google Scholar 

  • Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115(3):1012–1030

    Article  Google Scholar 

  • Szuberla C, Olson J (2004) Uncertainties associated with parameter estimation in atmospheric infrasound arrays. J Acoust Soc Am 115(1)

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics

    Google Scholar 

  • Trampert J, Leveque JJ (1990) Simultaneous iterative reconstruction technique: Physical interpretation based on the generalized least squares solution. J Geophys Res: Solid Earth 95(B8):12,553–12,559. https://doi.org/10.1029/JB095iB08p12553

    Article  Google Scholar 

  • Wapenaar K, Fokkema J (2006) Greens function representations for seismic interferometry. Geophysics 71(4):SI33–SI46

    Article  Google Scholar 

  • Waxler R, Gilbert K (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119(5):2651–2661

    Article  Google Scholar 

  • Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549

    Google Scholar 

  • Waxler R, Assink JD, Velea D (2017) Modal expansions for infrasound propagation and their consequences for ground-to-ground propagation. J Acoust Soc Am

    Google Scholar 

  • Weaver RL, Lobkis OI (2001) Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. Phys Rev Lett 87(13):134,301

    Google Scholar 

  • Weemstra C, Boschi L, Goertz A, Artman B (2012) Seismic attenuation from recordings of ambient noise. Geophysics

    Google Scholar 

  • Weemstra C, Snieder R, Boschi L (2015) On the estimation of attenuation from the ambient seismic field: inferences from distributions of isotropic point scatterers. Geophys J Int 203(2):1054

    Article  Google Scholar 

  • Whipple F (1926) Audibility of explosions and the constitution of the upper atmosphere. Nature 118:309–313

    Article  Google Scholar 

  • Zwolak JW, Boggs P, Watson LT (2005) ODRPACK95; a weighted orthogonal distance regression code with bound constraints. Technical report TR-04-31, Computer Science, Virginia Tech., U.S.A

    Google Scholar 

Download references

Acknowledgements

This work was partly performed during the course of the ARISE design study project: part one (2012–2014) funded by European Union FP7 program (grant number 284387) and part two (2015–2017) funded by the European Commission H2020 program (grant number 653980). L.E.’s contribution is funded through a VIDI project from the Dutch Science Foundation (NWO), project number 864.14.005. The authors thank the CTBTO and station operators for the high quality of IMS data and products and would like to acknowledge the Acoustic Surveillance for Hazardous Eruptions (ASHE) project (Garcés et al. 2007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelle Assink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assink, J. et al. (2019). Advances in Infrasonic Remote Sensing Methods. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_18

Download citation

Publish with us

Policies and ethics