Advertisement

Modeling the Detection Capability of the Global IMS Infrasound Network

  • Alexis Le PichonEmail author
  • Lars Ceranna
  • Julien Vergoz
  • Dorianne Tailpied
Chapter

Abstract

The International Monitoring System (IMS) infrasound network is being deployed to ensure compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Recent global scale observations recorded by this network confirm that its detection capability is highly variable in space and time. Previous studies estimated the radiated source energy from remote observations using empirical yield-scaling relations which account for the along-path stratospheric winds. Although these relations reduce the variance in the explosive energy yield estimates, large error remains. Today, numerical modeling techniques provide a basis to better predict the effects of the source and middle atmospheric dynamic parameters on propagation. In order to account for a realistic description of the dynamic structure of the atmosphere, model predictions are further enhanced by wind and temperature error distributions as measured by high-resolution middle atmospheric sounding techniques. In the context of the future verification of the CTBT, these predictions quantify uncertainties of the IMS infrasound network performance in higher resolution, and are helpful for the design and prioritizing maintenance of any arbitrary infrasound monitoring network.

Notes

Acknowledgements

All the data used in this work were collected by the University of Firenze (UNIFI), by IS48 in Tunisia and by the National Center of Cartography and Remote Sensing of Tunis in Tunisia. This work was partly performed during the course of the ARISE design study project, funded by the European Union under the H2020 Framework Programme (grant 653980).

References

  1. Assink JD, Le Pichon A, Blanc E, Kallel M, Khemiri L (2014) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res Atmos 119:8659–8683.  https://doi.org/10.1002/2014JD021632CrossRefGoogle Scholar
  2. Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887Google Scholar
  3. Brown D, Ceranna L, Prior M, Mialle P, Le Bras RJ (2014) The IDC seismic, hydroacoustic and infrasound global low and high noise models. Pure Appl Geophys 171:361–375CrossRefGoogle Scholar
  4. Campus P, Christie DR (2010) Worldwide observations of infrasonic waves. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 195–234Google Scholar
  5. Ceranna L, Le Pichon A, Green DN, Mialle P (2009) The Buncefield explosion: a benchmark for infrasound analysis across Central Europe. Geophys J Int 177:491–508.  https://doi.org/10.1111/j.1365-246X.2008.03998.xCrossRefGoogle Scholar
  6. Clauter DA, Blandford RR (1997) Capability modelling of the proposed international monitoring system 60-station infrasonic network. In: Proceedings of the infrasound workshop for CTBT monitoring, LA-UR-98–56, Santa Fe, New MexicoGoogle Scholar
  7. Charlton AJ, Polvani LM (2007) A new look at stratospheric sudden warmings. Part I: climatology and modeling benchmarks. J Clim 20:449–469CrossRefGoogle Scholar
  8. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118:2494–2505.  https://doi.org/10.1002/jgrd.50125CrossRefGoogle Scholar
  9. Christie D, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 29–75CrossRefGoogle Scholar
  10. Dabrowa AL, Green DN, Rust AC, Phillips JC (2011) A global study of volcanic infrasound characteristics and the potential for long-range monitoring. Earth Planet Sci Lett 310(3):369–379.  https://doi.org/10.1016/j.epsl.2011.08.027CrossRefGoogle Scholar
  11. Dabrowa AL, Green DN, Johnson JB, Rust A (2014) Comparing near-regional and local measurements of infrasound from Mount Erebus, Antarctica: implications for monitoring. J Volcanol Geotherm Res 288:46–61.  https://doi.org/10.1016/j.jvolgeores.2014.10.001CrossRefGoogle Scholar
  12. De Groot-Hedlin CD, Hedlin MAH, Drob DP (2010) Atmospheric Variability and Infrasound Monitoring. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 475–507CrossRefGoogle Scholar
  13. Drob DP, Picone JM, Garcés MA (2003) The global morphology of infrasound propagation. J Geophys Res 108:4680.  https://doi.org/10.1029/2002JD003307CrossRefGoogle Scholar
  14. Drob DP et al (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 113:A12304.  https://doi.org/10.1029/2008JA013668CrossRefGoogle Scholar
  15. Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity-wave fields for long-range infrasound propagation calculations. J Geophys Res Atmos 118:3933–3943.  https://doi.org/10.1029/2012JD018077CrossRefGoogle Scholar
  16. European Centre for Medium-Range Weather Forecasts (ECMWF) (2013) IFS documentation Cy38r1. Operational implementation 19 June 2012, Technical report, European Centre for Medium-Range Weather Forecasts, Reading, UKGoogle Scholar
  17. Evers LG, Ceranna L, Haak HW, Le Pichon A, Whitaker RW (2007) A seismo-acoustic analysis of the gas-pipeline explosion near Ghislenghien in Belgium. Bull Seism Soc Am 97(2):417–425CrossRefGoogle Scholar
  18. Fee D, Matoza RS (2013) An overview of volcano infrasound: from Hawaiian to plinian, local to global. J Volcanol Geotherm Res 249:123–139.  https://doi.org/10.1016/j.jvolgeores.2012.09.002CrossRefGoogle Scholar
  19. Fee D et al (2013) Overview of the 2009 and 2011 sayarim infrasound calibration experiments. J Geophys Res Atmos 118:6122–6143.  https://doi.org/10.1002/jgrd.50398CrossRefGoogle Scholar
  20. Gainville O, Blanc-Benon Ph, Blanc E, Roche R, Millet C, Le Piver F, Despres B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound propagation from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 575–598CrossRefGoogle Scholar
  21. Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135(1):255–263.  https://doi.org/10.1046/j.1365-246X.1998.00618.xCrossRefGoogle Scholar
  22. Green DN, Bowers D (2010) Estimating the detection capability of the international monitoring system infrasound network. J Geophys Res 115:D18116.  https://doi.org/10.1029/2010JD014017CrossRefGoogle Scholar
  23. Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. J Int, Geophys.  https://doi.org/10.1111/j.1365-246X.2011.04975.xCrossRefGoogle Scholar
  24. Hedlin MAH, Drob DP (2014) Statistical characterization of atmospheric gravity waves by seismoacoustic observations. J Geophys Res Atmos 119.  https://doi.org/10.1002/2013jd021304Google Scholar
  25. Killeen TL, Wu Q, Solomon SC, Ortland DA, Skinner WR, Niciejewski RJ, Gell DA (2006) TIMED doppler interferometer: overview and recent results. J Geophys Res 111:A10S01.  https://doi.org/10.1029/2005ja011484
  26. Kulichkov S (2010) On the prospects for acoustic sounding of the fine structure of the middle atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 511–540CrossRefGoogle Scholar
  27. Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the international monitoring system infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112.  https://doi.org/10.1029/2008JD010907CrossRefGoogle Scholar
  28. Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121.  https://doi.org/10.1029/2011JD016670CrossRefGoogle Scholar
  29. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res Atmos 120.  https://doi.org/10.1002/2015jd023273Google Scholar
  30. Lingevitch JF, Collins MD, Dacol DK, Drob DP, Rogers JCW, Siegmann WL (2002) A wide-angle and high Mach number parabolic equation. J Acoust Soc Am 111.  https://doi.org/10.1121/1.1430683CrossRefGoogle Scholar
  31. Marchetti E, Ripepe M, Ulivieri G, Caffo S, Privitera E (2009) Infrasonic evidences for branched conduit dynamics at Mt. Etna volcano, Italy. Geophys Res Lett 36:L19308.  https://doi.org/10.1029/2009GL040070CrossRefGoogle Scholar
  32. Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162Google Scholar
  33. Matoza RS et al (2011) Long-range acoustic observations of the Eyjafjallajökull eruption, Iceland, April–May 2010. Geophys Res Lett 38:L06308.  https://doi.org/10.1029/2011GL047019CrossRefGoogle Scholar
  34. Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds)Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077Google Scholar
  35. Mialle P et al (2015) Towards a volcanic notification system with infrasound data, Oral T1.1-O4. In: Science and technology 2015 conference (CTBTO), 22–26 June, Vienna, AustriaGoogle Scholar
  36. Mialle P, Brown D, Arora N (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248Google Scholar
  37. Smets PSM, Evers LG, Näsholm SP, Gibbons SJ (2015) Probabilistic infrasound propagation using realistic atmospheric perturbations. Geophys Res Lett 42.  https://doi.org/10.1002/2015gl064992CrossRefGoogle Scholar
  38. Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res Atmos 121.  https://doi.org/10.1002/2015jd024251Google Scholar
  39. Stevens JL, Divnov II, Adams DA, Murphy JR, Bourchik VN (2002) Constraints on infrasound scaling and attenuation relations from Soviet explosion data. Pure Appl Geophys 159:1045–1062CrossRefGoogle Scholar
  40. Sutherland LC, Bass HE (2004) Atmospheric absorption in the atmosphere up to 160 km. J Acoust Soc Am 115(3):1012–1032.  https://doi.org/10.1121/1.1631937CrossRefGoogle Scholar
  41. Tailpied D, Le Pichon A, Marchetti E, Assink J (2016) Assessing and optimizing the performance and infrasound monitoring network. Geophys J Int 208.  https://doi.org/10.1093/gji/ggw400CrossRefGoogle Scholar
  42. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds)Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  43. Whitaker RW (1995) Infrasonic monitoring. In: Paper presented at 17th annual seismic research symposium, LANL, Scottsdale, ArizonaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Alexis Le Pichon
    • 1
    Email author
  • Lars Ceranna
    • 2
  • Julien Vergoz
    • 1
  • Dorianne Tailpied
    • 3
  1. 1.CEA, DAM, DIFArpajonFrance
  2. 2.BGRHannoverGermany
  3. 3.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations