Advertisement

Internal Gravity Wave Perturbations and Their Impacts on Infrasound Propagation in the Atmosphere

  • Igor ChunchuzovEmail author
  • Sergey Kulichkov
Chapter

Abstract

The model of shaping of the 3-D and 1-D wavenumber spectra for the wind velocity and temperature fluctuations induced by atmospheric gravity waves is described here. Using the 3-D spectrum of gravity wave perturbations, the variances of the fluctuations of sound travel time along refracting ray paths and the azimuth of arrival of acoustic signals are estimated. These variances define the errors in localization of infrasound sources caused by gravity wave perturbations. The results of theory and numerical modeling of infrasound scattering from gravity wave perturbations are presented. With a recently developed infrasound probing method the vertical profiles of the horizontal wind velocity fluctuations in the upper stratosphere (height range is 30–52 km) and lower thermosphere (90–140 km) are retrieved. The method is based on analytic relation between scattered infrasound field in the shadow zone and the vertical profile of the layered inhomogeneities of the effective sound speed. The obtained results show a capability of the probing method in the retrieval of the detailed wind-layered structure in the stratosphere, mesosphere and lower thermosphere. The vertical wavenumber spectra of the retrieved vertical profiles of the wind velocity fluctuations in the upper stratosphere and their coherence functions are analyzed.

Notes

Acknowledgements

We thank J. Assink and R. Waxler for useful discussion of this work. This work was supported by European project ARISE and Russian grants RSF 14-27-00134 (Sects. 16.216.4) and RFBR 15-05-03461 (Sects. 16.516.7), 16-05-00438 (Sects. 16.816.12).

References

  1. Akmaev RA (2001) Simulation of large-scale dynamics in the mesosphere and lower thermosphere with Doppler-spread parameterization of gravity waves. J Geophys Res 106(D1):1193–1204CrossRefGoogle Scholar
  2. Alexander MJ, Dunkerton TJ (1999) A spectral parameterization of mean-flow forcing due to breaking gravity waves. J Atmos Sci 56:4167–4182CrossRefGoogle Scholar
  3. Alexander MJ, Rosenlof KH (2003) Gravity-wave forcing in the stratosphere: observational constraints from the upper atmosphere research satellite and implications for parameterization in global models. J Geophys Res 108(D19):4597.  https://doi.org/10.1029/2003JD003373CrossRefGoogle Scholar
  4. Alexander MJ et al (2010) Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models. Q J R Meteorol Soc 136:1103–1124Google Scholar
  5. Assink JD, Waxler R, Drob DP (2012) On the sensitivity of infrasonic travel times in the equatorial region to the atmospheric tides. J Geophys Res 117.  https://doi.org/10.1029/2011jd016107CrossRefGoogle Scholar
  6. Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res 118(19):10707–10724Google Scholar
  7. Assink JD, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  8. Bacmeister et al (1996) Stratospheric horizontal wave number spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J Geophys Res 101(D5):9441–9470CrossRefGoogle Scholar
  9. Blokhintsev DI (1956) Acoustics of a nonhomogeneous moving medium, NACA Tech Memo 1399Google Scholar
  10. Broutman D, Macaskill C, Mcintyre ME, Rottman JW (1997) On doppler-spreading models of internal waves. Geophys Res Lett 24(22):2813–2816CrossRefGoogle Scholar
  11. Broutman D, Grimshaw RHJ, Eckermann SD (2004) On internal waves in a Lagrangian reference frame. J Atmos Sci 61:1308–1313CrossRefGoogle Scholar
  12. Bush GA, Kulichkov SN, Svertilov AI (1997) Some results of the experiments on acoustic wave scattering from anisotropic inhomogeneities of the middle atmosphere. Izv Atmos Ocean Phys 33(4):445–452Google Scholar
  13. Chibisov SV (1940) On the travel time of a sound ray in the atmosphere. Izv Akad Nauk Ser Geograf Geofiz 4:475–520Google Scholar
  14. Chunchuzov IP (1996) The spectrum of high-frequency internal waves in the atmospheric waveguide. J Atmos Sci 53:1798–1814CrossRefGoogle Scholar
  15. Chunchuzov IP (2001) On the role of nonlinearity in the formation of the spectrum of atmospheric gravity waves. Izv Atmos Oceanic Phys 37(4):466–469Google Scholar
  16. Chunchuzov IP (2002) On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere. J Atmos Sci 59:1753–1772CrossRefGoogle Scholar
  17. Chunchuzov IP (2004) Influence of internal gravity waves on sound propagation in the lower atmosphere. Meteorol Atmos Phys 85:61–76CrossRefGoogle Scholar
  18. Chunchuzov IP (2009) On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere. Ann Geophys 27:4105–4124CrossRefGoogle Scholar
  19. Chunchuzov I, Kulichkov S, Popov O, Waxler R, Assink J (2011) Scattering of infrasound by anisotropic inhomogeneities of the atmosphere. Izv Atmos Ocean Phys 47(5):540–547CrossRefGoogle Scholar
  20. Chunchuzov IP, Kulichkov SN, Firstov PP (2013) On the acoustic N-wave reflections from layered nonhomogeneities of the atmosphere. Izv Atmos Ocean Phys 49(3):258–270Google Scholar
  21. Chunchuzov I, Kulichkov S, Popov O, Hedlin M (2014) Modeling propagation of infrasound signals observed by a dense seismic network. J Acoust Soc Am 135(1):38–48.  https://doi.org/10.1121/1.4845355CrossRefGoogle Scholar
  22. Chunchuzov IP, Kulichkov SN, Popov OE, Perepelkin VG, Vasilev AP, Glushkov AI, Firstov PP (2015a) The characteristics of a fine-scale structure of the wind velocity field in the stratosphere and lower thermosphere obtained from infrasonic signals in the acoustic shadow zones. Izv Atmos Ocean Phys 51(1):57–74CrossRefGoogle Scholar
  23. Chunchuzov I, Kulichkov S, Perepelkin V, Popov O, Firstov P, Assink JD, Marchetti E (2015b) Study of the wind velocity- layered structure in the stratosphere, mesosphere and lower thermosphere by using infrasound probing of the atmosphere. J Geophys Res 120:8828–8840.  https://doi.org/10.1002/2015JD023276CrossRefGoogle Scholar
  24. Dewan EM, Good RE (1986) Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J Geophys Res 92:2742–2748CrossRefGoogle Scholar
  25. Dewan E (1997) Saturated-cascade similitude theory of gravity wave spectra. J Geophys Res 102:29799–29817CrossRefGoogle Scholar
  26. Donn WL, Rind DH (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172CrossRefGoogle Scholar
  27. Drob DP, Picone JM, Garces MA (2003) The global morphology of infrasound propagation. J Geophys Res 108(D21):4680.  https://doi.org/10.1029/2002JD003307CrossRefGoogle Scholar
  28. Drob DP et al (2008) An empirical model of the earth’s horizontal wind fields: HWM07. J Geophys Res 113 (A12304)Google Scholar
  29. Drob DP, Meier RR, Picone JM, Garces M (2010) Inversion of infrasound signals for passive atmospheric remote sensing. In: Infrasound monitoring for atmospheric studies Le Pichon A, Blanc E, Hauchecorne A, chap 24. Springer, New York, pp 701–732Google Scholar
  30. Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J Geophys Res Atmos 118.  https://doi.org/10.1029/2012jd018077Google Scholar
  31. Duckert P (1931) Ueber die Ausbreitung von Explosionswellen in der Erdatmosphiire. Ergeb d Kosm Physik 1:236–290Google Scholar
  32. Eckermann SD (1999) Isentropic advection by gravity waves: quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys Res Lett 26:201–204CrossRefGoogle Scholar
  33. Eckermann SD, Hoppel KW, Coy L, McCormack JP, Siskind DE, Nielsen K, Kochenash A, Stevens MH, Englert CR, Hervig M (2009) High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J Atmos Sol-Terr Phys 71:531–551CrossRefGoogle Scholar
  34. Eckermann SD (2011) Explicitly stochastic parameterization of nonorographic gravity wave drag. J Atmos Sci 68:1749–1765CrossRefGoogle Scholar
  35. Engler N, Singer W, Latteck R, Strelnikov B (2008) Comparison of wind measurements in the troposphere and mesosphere by VHF/MF radars and in-situ techniques. Ann Geophys 26:3693–3705CrossRefGoogle Scholar
  36. Flattè S, Dashen R, Munk W, Watson K, Zachariasen F (1979) Sound transmission through a fluctuating ocean. Cambridge University Press, CambridgeGoogle Scholar
  37. Franke PM, Robinson WA (1999) Nonlinear behaviour in the propagation of atmospheric gravity waves. J Atmos Sci 56:3010–3027CrossRefGoogle Scholar
  38. Fritts DC (1984) Gravity wave saturation in the middle atmosphere: a review of theory and observations. Rev Geophys Space Phys 22:275–308CrossRefGoogle Scholar
  39. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41:1/1003.  https://doi.org/10.1029/2001rg000106
  40. Fritts DC, Williams BP, She CY, Vance JD, Rapp M, Lubken F-J, Mullemann A, Schmidlin FJ, Goldberg RA (2004) Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys Res Lett 31, L24S06.  https://doi.org/10.1029/2003gl019389
  41. Gainville O, Blank-Benon Ph, Blanc E, Roche R, Millet C, Le Piver F, Despires B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 575–598Google Scholar
  42. Gardner CS (1996) Testing theories of atmospheric gravity wave saturation and dissipation. J Atmos Terr Phys 58:1575–1589CrossRefGoogle Scholar
  43. Gibson R, Drob D, Norris D (2007) Infrasound propagation calculation techniques using mesoscale atmospheric and terrain specifications. In: Infrasound technology workshop (ITW 2007), Tokyo, JapanGoogle Scholar
  44. Gibson R, Norris D (2008) Recent applications of the time-domain parabolic equation (TDPE) model to ground truth events. In: Infrasound technology workshop (ITW 2005), BermudaGoogle Scholar
  45. Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier, Amsterdam, p 456Google Scholar
  46. Gurvich AS (1997) A heuristic model of three-dimensional spectra of temperature inhomogeneities in the stably stratified atmosphere. Ann Geophys 15:856–869CrossRefGoogle Scholar
  47. Gurvich AS, Chunchuzov IP (2003) Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations. J Geophys Res 108(D5):4166.  https://doi.org/10.1029/2002JD002281CrossRefGoogle Scholar
  48. Gurvich A, Chunchuzov I (2005) Estimates of characteristic scales in the spectrum of internal waves in the stratosphere obtained from space observations of stellar scintillations. J Geophys Res 110:D03114.  https://doi.org/10.1029/2004JD005199CrossRefGoogle Scholar
  49. Gurvich AS, Chunchuzov IP (2008) Three-dimensional spectrum of temperature fluctuations in stably stratified atmosphere. Ann Geophys 26:2037–2042CrossRefGoogle Scholar
  50. Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere above Southern California. Bull Am Meteorol Soc 20:192–201CrossRefGoogle Scholar
  51. Hamilton K (1997) Gravity wave processes. NATO ASI Series I, Springer, Their parameterization in Global Climate Models, p 383CrossRefGoogle Scholar
  52. Hays PB et al (1993) The high resolution Doppler imager on the upper atmosphere research satellite. J Geophys Res 98(10):713–723Google Scholar
  53. Hedlin MAH, Walker KT (2013) A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks. Phil Trans R Soc A 13, 371(1984):20110542.  https://doi.org/10.1098/rsta.2011.0542CrossRefGoogle Scholar
  54. Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38:1441–1481CrossRefGoogle Scholar
  55. Hines CO (1991a) The saturation of gravity waves in the middle atmosphere. Part I: critique of linear instability theory. J Atmos Sci 48:1348–1359CrossRefGoogle Scholar
  56. Hines CO (1991b) The saturation of gravity waves in the middle atmosphere. Part II: development of doppler-spread theory. J Atmos Sci 48:1360–1379Google Scholar
  57. Hines CO (1993) The saturation of gravity waves in the middle atmosphere. Part IV: cutoff of the incident wave spectrum. J Atmos Sci 50:3045–3060CrossRefGoogle Scholar
  58. Hines CO (1996) Nonlinearity of gravity wave saturated spectra in the middle atmosphere. Geophys Res Lett 23:3309–3312CrossRefGoogle Scholar
  59. Hines CO (2001) Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves. J Fluid Mech 448:289–313CrossRefGoogle Scholar
  60. Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology, 5th edn. Academic Press, 552 ppGoogle Scholar
  61. Hoppel KW, Eckermann SD, Goy L, Nedoluha GE, Allen DR, Swadley SD, Baker NL (2013) Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon Weather Rev 141:3314–3330CrossRefGoogle Scholar
  62. Hostetler CA, Gardner CS (1994) Observations of horizontal and vertical wave number spectra of gravity wave motions in the stratosphere and mesosphere over the mid-Pacific. J Geophys Res 99:1283–1302CrossRefGoogle Scholar
  63. Jacobi Ch, Fröhlich K, Viehweg C, Stober G, Kürschner D (2007) Midlatitude MLT meridional winds and temperatures measured with meteor radar. Adv Space Res 39(8):1278–1283CrossRefGoogle Scholar
  64. Kulichkov SN (2002) Conservation of “Acoustic Momentum” during long-range infrasonic propagation in the atmosphere. Izv Atmos Ocean Phys 38(5):582–587Google Scholar
  65. Kulichkov SN (2008) Evidence for nonlinear atmospheric effects in infrasound propagation from explosions of different types and yields. In: International symposium on nonlinear acoustics (ISNA2008)Google Scholar
  66. Kulichkov SN, Bush GA (2001) Rapid variations of infrasonic signals from similar explosions at long distances. Izv Atmos Ocean Phys 37(3):331–338Google Scholar
  67. Kulichkov SN, Bush GA, Svertilov AI (2002) New type of infrasonic arrivals in the geometric shadow region at long distances from explosions. Izv Atmos Ocean Phys 38(4):397–402Google Scholar
  68. Kulichkov SN (2004) Long-range propagation and scattering of low-frequency sound pulses in the middle atmosphere. Meteorol Atmos Phys 85(1–3):47–60Google Scholar
  69. Kulichkov S (2010) On the Prospects for Acoustic Sounding of the Fine Structure of the Middle Atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New Yoork, pp 511–540CrossRefGoogle Scholar
  70. Kulichkov SN, Chunchuzov IP, Perepelkin VG, Svertilov AI, Baryshnikov AK (2007) On the influence of anisotropic turbulence on fluctuations in the azimuths and grazing angles of acoustic signals in the lower and middle atmosphere. InfraMatics 18(June):1–5Google Scholar
  71. Kulichkov SN, Bush GA, Chunchuzov IP, Mishenin AA, Golikova EV (2016) Space-time variability of the fine structure of the upper atmosphere according to the infrasound probing data. Izv Atmos Ocean Phys 52(2):200–212CrossRefGoogle Scholar
  72. Larsen MF (2002) Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J Geophys Res: Space Phys 107(A8): SIA 28-1–SIA 28-14CrossRefGoogle Scholar
  73. Le Pichon A, Blanc E, Drob DP, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110:D13106.  https://doi.org/10.1029/2004JD005587CrossRefGoogle Scholar
  74. Le Pichon A, Vergoz J, Cansi Y, Geranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 629–646CrossRefGoogle Scholar
  75. Le Pichon A, Ceranna L, Vergoz J, Tailpied D (2019) Modeling the detection capability of the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 593–604Google Scholar
  76. Lighthill J (1978) Waves in fluids. Cambridge University Press, 504 ppGoogle Scholar
  77. Lindborg E (2006) The energy cascade in a strongly stratified fluid. J Fluid Mech 550:207–242CrossRefGoogle Scholar
  78. Lindborg E (2007) Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J Atmos Sci 64:1017–1025.  https://doi.org/10.1175/JAS3864.1CrossRefGoogle Scholar
  79. Liszka L, Enell CF, Raita T (2009) Infrasound in the atmosphere—towards a new propagation model. InfraMatics 24:1–14Google Scholar
  80. Lumley JL (1964) The spectrum of nearly inertial turbulence in a stably stratified fluid. J Atmos Sci 21:99–102CrossRefGoogle Scholar
  81. Manson AH (1990) Gravity wave horizontal and vertical wavelengths: an update of measurements in the mesopause region (∼80–100 km). J Atmos Sci 47:2765–2773CrossRefGoogle Scholar
  82. Murayama Y, Tsuda T, Nakamura T, Kato S, Fukao S (1992) Seasonal variation of gravity wave activity in the middle atmosphere observed with the MU RADAR. In: Proceedings of the international symposium middle atmosphere science (MAS symposium 1992), Kyoto, Japan, March 23–27, pp 24–25Google Scholar
  83. Marty J (2014) Overview of the IMS infrasound network and engineering projects. In: Presentation at infrasound technology workshop (ITW 2014), Vienna, 13–16 Oct 2014Google Scholar
  84. Medvedev AS, Klaassen GP (1995) Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J Geophys Res 100(D12):25841–25853.  https://doi.org/10.1029/95JD02533CrossRefGoogle Scholar
  85. Merzlyakov E, Pancheva D, Mitchell N, Forbes JM, Portnyagin YuI, Palo S, Makarova N, Muller HG (2004) High- and mid-latitude quasi-2-day waves observed simultaneously by four meteor radars during summer 2000. Ann Geophys 22:773–788CrossRefGoogle Scholar
  86. Nappo CJ (2002) An introduction to atmospheric gravity waves. Academic PressGoogle Scholar
  87. Norris D (2005) Broadband propagation modeling and scattering. In: Presentation at infrasound technology workshop (ITW 2005), TahitiGoogle Scholar
  88. Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chap. 17. Springer, New York, pp 541–573Google Scholar
  89. Ostashev VE, Chunchuzov IP, Wilson DK (2005) Sound propagation through and scattering by internal gravity waves in a stably stratified atmosphere. J Acoust Soc Am 118(6):3420–3429CrossRefGoogle Scholar
  90. Pinkel R (2008) Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J Phys Oceanogr 38:291–313CrossRefGoogle Scholar
  91. Phillips OM (1967) Theoretical and experimental study of gravity wave interactions. In: Lighthill MJ (ed) Proceedings of the royal society: a discussion on nonlinear theory of wave propagation in dispersive system, London. Series A, mathematical and physical sciences, vol 299, 1456, pp 141–160Google Scholar
  92. Portnyagin Yu, Solovjova T, Merzlyakov E, Forbes J, Palo S, Ortland D, Hocking W et al (2004) Mesosphere/lower thermosphere prevailing wind model. Adv Space Res 34:1755–1762CrossRefGoogle Scholar
  93. Rogers PH, Maglieri DJ (2015) Concorde booms and the mysterious east coast noises. Acoust Today 11(2):34–40Google Scholar
  94. Rüfenacht R, Kämpfer N, Murk A (2012) First middle-atmospheric zonal wind profile measurements with a new ground-based microwave doppler-spectro-radiometer. Atmos Meas Tech 5:2647–2659CrossRefGoogle Scholar
  95. Shur GN (1962) Experimental investigation of the energy spectrum of atmospheric turbulence. Trudy tsent Aerol Obser, 79–90Google Scholar
  96. Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119.  https://doi.org/10.1002/2014jd021905Google Scholar
  97. Smets P, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755Google Scholar
  98. Smith SA, Fritts DC, VanZandt TE (1987) Evidence for a saturated spectrum of atmospheric gravity waves. J Atmos Sci 44:1404–1410CrossRefGoogle Scholar
  99. Sukoriansky S, Galperin B (2013) An analytical theory of the buoyancy–Kolmogorov subrange transition in turbulent flows with stable stratification. Phil Trans R Soc A 371:20120212.  https://doi.org/10.1098/rsta.2012.0212CrossRefGoogle Scholar
  100. Tsuda T et al (1992) Characteristics of gravity waves in the middle atmosphere observed with rocketsondes at Uchinoura during DYANA campaign. In: Proceedings of the international symposium middle atmosphere science (MAS symposium), 1992, Kyoto, Japan, March 23–27, pp 141–143Google Scholar
  101. Tsuda T (2014) Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation. In: Proceedings of the Japan Academy. Series B 90, vol 90, pp 12–27CrossRefGoogle Scholar
  102. VanZandt TE (1982) A universal spectrum of buoyancy waves in the atmosphere. Geophys Res Lett 9:575–578CrossRefGoogle Scholar
  103. Vinnichenko NK, Pinus NZ, Shmeter SM, Shur GN (1980) Turbulence in the free atmosphere, 2nd edn. Plenum, New York, p 310CrossRefGoogle Scholar
  104. Vincent RA, Allen SJ, Eckermann SD (1997) Gravity -Wave Parameters in the Lower Stratosphere. In: Hamilton K, Series NATOASI (eds) Gravity wave processes, their parameterization in global climate models. Springer, Berlin, pp 7–25CrossRefGoogle Scholar
  105. Warner CD, McIntyre ME (1996) On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J Atmos Sci 53:3213–3235CrossRefGoogle Scholar
  106. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  107. Weinstock J (1985) Effect of gravity waves on turbulence decay in stratified fluids. J Fluid Mech 140:11–26CrossRefGoogle Scholar
  108. Weinstock J (1990) Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion. J Atmos Sci 47:2211–2225CrossRefGoogle Scholar
  109. Whipple FJW (1923) The high temperature of the upper atmosphere as an explanation of zones of audibility. Nature 111:187CrossRefGoogle Scholar
  110. Whipple FJW (1939) The upper atmosphere, density and temperature, direct measurements and sound evidence. Q J R Meteorol Soc 65:319–323CrossRefGoogle Scholar
  111. Wu DL, Schwartz MJ, Waters JW, Limpasuvan V, Wu Q, Killeen TL (2008) Mesospheric Doppler wind measurements from aura microwave limb sounder (MLS). Adv Space Res 42:1246–1252.  https://doi.org/10.1016/j.asr.2007.06.014CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Obukhov Institute of Atmospheric PhysicsMoscowRussia

Personalised recommendations