Skip to main content

Internal Gravity Wave Perturbations and Their Impacts on Infrasound Propagation in the Atmosphere

  • Chapter
  • First Online:

Abstract

The model of shaping of the 3-D and 1-D wavenumber spectra for the wind velocity and temperature fluctuations induced by atmospheric gravity waves is described here. Using the 3-D spectrum of gravity wave perturbations, the variances of the fluctuations of sound travel time along refracting ray paths and the azimuth of arrival of acoustic signals are estimated. These variances define the errors in localization of infrasound sources caused by gravity wave perturbations. The results of theory and numerical modeling of infrasound scattering from gravity wave perturbations are presented. With a recently developed infrasound probing method the vertical profiles of the horizontal wind velocity fluctuations in the upper stratosphere (height range is 30–52 km) and lower thermosphere (90–140 km) are retrieved. The method is based on analytic relation between scattered infrasound field in the shadow zone and the vertical profile of the layered inhomogeneities of the effective sound speed. The obtained results show a capability of the probing method in the retrieval of the detailed wind-layered structure in the stratosphere, mesosphere and lower thermosphere. The vertical wavenumber spectra of the retrieved vertical profiles of the wind velocity fluctuations in the upper stratosphere and their coherence functions are analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akmaev RA (2001) Simulation of large-scale dynamics in the mesosphere and lower thermosphere with Doppler-spread parameterization of gravity waves. J Geophys Res 106(D1):1193–1204

    Article  Google Scholar 

  • Alexander MJ, Dunkerton TJ (1999) A spectral parameterization of mean-flow forcing due to breaking gravity waves. J Atmos Sci 56:4167–4182

    Article  Google Scholar 

  • Alexander MJ, Rosenlof KH (2003) Gravity-wave forcing in the stratosphere: observational constraints from the upper atmosphere research satellite and implications for parameterization in global models. J Geophys Res 108(D19):4597. https://doi.org/10.1029/2003JD003373

    Article  Google Scholar 

  • Alexander MJ et al (2010) Recent developments in gravity wave effects in climate models, and the global distribution of gravity wave momentum flux from observations and models. Q J R Meteorol Soc 136:1103–1124

    Google Scholar 

  • Assink JD, Waxler R, Drob DP (2012) On the sensitivity of infrasonic travel times in the equatorial region to the atmospheric tides. J Geophys Res 117. https://doi.org/10.1029/2011jd016107

    Article  Google Scholar 

  • Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res 118(19):10707–10724

    Google Scholar 

  • Assink JD, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632

    Google Scholar 

  • Bacmeister et al (1996) Stratospheric horizontal wave number spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft. J Geophys Res 101(D5):9441–9470

    Article  Google Scholar 

  • Blokhintsev DI (1956) Acoustics of a nonhomogeneous moving medium, NACA Tech Memo 1399

    Google Scholar 

  • Broutman D, Macaskill C, Mcintyre ME, Rottman JW (1997) On doppler-spreading models of internal waves. Geophys Res Lett 24(22):2813–2816

    Article  Google Scholar 

  • Broutman D, Grimshaw RHJ, Eckermann SD (2004) On internal waves in a Lagrangian reference frame. J Atmos Sci 61:1308–1313

    Article  Google Scholar 

  • Bush GA, Kulichkov SN, Svertilov AI (1997) Some results of the experiments on acoustic wave scattering from anisotropic inhomogeneities of the middle atmosphere. Izv Atmos Ocean Phys 33(4):445–452

    Google Scholar 

  • Chibisov SV (1940) On the travel time of a sound ray in the atmosphere. Izv Akad Nauk Ser Geograf Geofiz 4:475–520

    Google Scholar 

  • Chunchuzov IP (1996) The spectrum of high-frequency internal waves in the atmospheric waveguide. J Atmos Sci 53:1798–1814

    Article  Google Scholar 

  • Chunchuzov IP (2001) On the role of nonlinearity in the formation of the spectrum of atmospheric gravity waves. Izv Atmos Oceanic Phys 37(4):466–469

    Google Scholar 

  • Chunchuzov IP (2002) On the high-wavenumber form of the Eulerian internal wave spectrum in the atmosphere. J Atmos Sci 59:1753–1772

    Article  Google Scholar 

  • Chunchuzov IP (2004) Influence of internal gravity waves on sound propagation in the lower atmosphere. Meteorol Atmos Phys 85:61–76

    Article  Google Scholar 

  • Chunchuzov IP (2009) On the nonlinear shaping mechanism for gravity wave spectrum in the atmosphere. Ann Geophys 27:4105–4124

    Article  Google Scholar 

  • Chunchuzov I, Kulichkov S, Popov O, Waxler R, Assink J (2011) Scattering of infrasound by anisotropic inhomogeneities of the atmosphere. Izv Atmos Ocean Phys 47(5):540–547

    Article  Google Scholar 

  • Chunchuzov IP, Kulichkov SN, Firstov PP (2013) On the acoustic N-wave reflections from layered nonhomogeneities of the atmosphere. Izv Atmos Ocean Phys 49(3):258–270

    Google Scholar 

  • Chunchuzov I, Kulichkov S, Popov O, Hedlin M (2014) Modeling propagation of infrasound signals observed by a dense seismic network. J Acoust Soc Am 135(1):38–48. https://doi.org/10.1121/1.4845355

    Article  Google Scholar 

  • Chunchuzov IP, Kulichkov SN, Popov OE, Perepelkin VG, Vasilev AP, Glushkov AI, Firstov PP (2015a) The characteristics of a fine-scale structure of the wind velocity field in the stratosphere and lower thermosphere obtained from infrasonic signals in the acoustic shadow zones. Izv Atmos Ocean Phys 51(1):57–74

    Article  Google Scholar 

  • Chunchuzov I, Kulichkov S, Perepelkin V, Popov O, Firstov P, Assink JD, Marchetti E (2015b) Study of the wind velocity- layered structure in the stratosphere, mesosphere and lower thermosphere by using infrasound probing of the atmosphere. J Geophys Res 120:8828–8840. https://doi.org/10.1002/2015JD023276

    Article  Google Scholar 

  • Dewan EM, Good RE (1986) Saturation and the “universal” spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J Geophys Res 92:2742–2748

    Article  Google Scholar 

  • Dewan E (1997) Saturated-cascade similitude theory of gravity wave spectra. J Geophys Res 102:29799–29817

    Article  Google Scholar 

  • Donn WL, Rind DH (1972) Microbaroms and the temperature and wind of the upper atmosphere. J Atmos Sci 29:156–172

    Article  Google Scholar 

  • Drob DP, Picone JM, Garces MA (2003) The global morphology of infrasound propagation. J Geophys Res 108(D21):4680. https://doi.org/10.1029/2002JD003307

    Article  Google Scholar 

  • Drob DP et al (2008) An empirical model of the earth’s horizontal wind fields: HWM07. J Geophys Res 113 (A12304)

    Google Scholar 

  • Drob DP, Meier RR, Picone JM, Garces M (2010) Inversion of infrasound signals for passive atmospheric remote sensing. In: Infrasound monitoring for atmospheric studies Le Pichon A, Blanc E, Hauchecorne A, chap 24. Springer, New York, pp 701–732

    Google Scholar 

  • Drob DP, Broutman D, Hedlin MA, Winslow NW, Gibson RG (2013) A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J Geophys Res Atmos 118. https://doi.org/10.1029/2012jd018077

    Google Scholar 

  • Duckert P (1931) Ueber die Ausbreitung von Explosionswellen in der Erdatmosphiire. Ergeb d Kosm Physik 1:236–290

    Google Scholar 

  • Eckermann SD (1999) Isentropic advection by gravity waves: quasi-universal M−3 vertical wavenumber spectra near the onset of instability. Geophys Res Lett 26:201–204

    Article  Google Scholar 

  • Eckermann SD, Hoppel KW, Coy L, McCormack JP, Siskind DE, Nielsen K, Kochenash A, Stevens MH, Englert CR, Hervig M (2009) High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007. J Atmos Sol-Terr Phys 71:531–551

    Article  Google Scholar 

  • Eckermann SD (2011) Explicitly stochastic parameterization of nonorographic gravity wave drag. J Atmos Sci 68:1749–1765

    Article  Google Scholar 

  • Engler N, Singer W, Latteck R, Strelnikov B (2008) Comparison of wind measurements in the troposphere and mesosphere by VHF/MF radars and in-situ techniques. Ann Geophys 26:3693–3705

    Article  Google Scholar 

  • Flattè S, Dashen R, Munk W, Watson K, Zachariasen F (1979) Sound transmission through a fluctuating ocean. Cambridge University Press, Cambridge

    Google Scholar 

  • Franke PM, Robinson WA (1999) Nonlinear behaviour in the propagation of atmospheric gravity waves. J Atmos Sci 56:3010–3027

    Article  Google Scholar 

  • Fritts DC (1984) Gravity wave saturation in the middle atmosphere: a review of theory and observations. Rev Geophys Space Phys 22:275–308

    Article  Google Scholar 

  • Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41:1/1003. https://doi.org/10.1029/2001rg000106

  • Fritts DC, Williams BP, She CY, Vance JD, Rapp M, Lubken F-J, Mullemann A, Schmidlin FJ, Goldberg RA (2004) Observations of extreme temperature and wind gradients near the summer mesopause during the MaCWAVE/MIDAS rocket campaign. Geophys Res Lett 31, L24S06. https://doi.org/10.1029/2003gl019389

  • Gainville O, Blank-Benon Ph, Blanc E, Roche R, Millet C, Le Piver F, Despires B, Piserchia PF (2010) Misty picture: a unique experiment for the interpretation of the infrasound from large explosive sources. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 575–598

    Google Scholar 

  • Gardner CS (1996) Testing theories of atmospheric gravity wave saturation and dissipation. J Atmos Terr Phys 58:1575–1589

    Article  Google Scholar 

  • Gibson R, Drob D, Norris D (2007) Infrasound propagation calculation techniques using mesoscale atmospheric and terrain specifications. In: Infrasound technology workshop (ITW 2007), Tokyo, Japan

    Google Scholar 

  • Gibson R, Norris D (2008) Recent applications of the time-domain parabolic equation (TDPE) model to ground truth events. In: Infrasound technology workshop (ITW 2005), Bermuda

    Google Scholar 

  • Gossard EE, Hooke WH (1975) Waves in the atmosphere. Elsevier, Amsterdam, p 456

    Google Scholar 

  • Gurvich AS (1997) A heuristic model of three-dimensional spectra of temperature inhomogeneities in the stably stratified atmosphere. Ann Geophys 15:856–869

    Article  Google Scholar 

  • Gurvich AS, Chunchuzov IP (2003) Parameters of the fine density structure in the stratosphere obtained from spacecraft observations of stellar scintillations. J Geophys Res 108(D5):4166. https://doi.org/10.1029/2002JD002281

    Article  Google Scholar 

  • Gurvich A, Chunchuzov I (2005) Estimates of characteristic scales in the spectrum of internal waves in the stratosphere obtained from space observations of stellar scintillations. J Geophys Res 110:D03114. https://doi.org/10.1029/2004JD005199

    Article  Google Scholar 

  • Gurvich AS, Chunchuzov IP (2008) Three-dimensional spectrum of temperature fluctuations in stably stratified atmosphere. Ann Geophys 26:2037–2042

    Article  Google Scholar 

  • Gutenberg B (1939) The velocity of sound waves and the temperature in the stratosphere above Southern California. Bull Am Meteorol Soc 20:192–201

    Article  Google Scholar 

  • Hamilton K (1997) Gravity wave processes. NATO ASI Series I, Springer, Their parameterization in Global Climate Models, p 383

    Book  Google Scholar 

  • Hays PB et al (1993) The high resolution Doppler imager on the upper atmosphere research satellite. J Geophys Res 98(10):713–723

    Google Scholar 

  • Hedlin MAH, Walker KT (2013) A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks. Phil Trans R Soc A 13, 371(1984):20110542. https://doi.org/10.1098/rsta.2011.0542

    Article  Google Scholar 

  • Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38:1441–1481

    Article  Google Scholar 

  • Hines CO (1991a) The saturation of gravity waves in the middle atmosphere. Part I: critique of linear instability theory. J Atmos Sci 48:1348–1359

    Article  Google Scholar 

  • Hines CO (1991b) The saturation of gravity waves in the middle atmosphere. Part II: development of doppler-spread theory. J Atmos Sci 48:1360–1379

    Google Scholar 

  • Hines CO (1993) The saturation of gravity waves in the middle atmosphere. Part IV: cutoff of the incident wave spectrum. J Atmos Sci 50:3045–3060

    Article  Google Scholar 

  • Hines CO (1996) Nonlinearity of gravity wave saturated spectra in the middle atmosphere. Geophys Res Lett 23:3309–3312

    Article  Google Scholar 

  • Hines CO (2001) Theory of the Eulerian tail in the spectra of atmospheric and oceanic internal gravity waves. J Fluid Mech 448:289–313

    Article  Google Scholar 

  • Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology, 5th edn. Academic Press, 552 pp

    Google Scholar 

  • Hoppel KW, Eckermann SD, Goy L, Nedoluha GE, Allen DR, Swadley SD, Baker NL (2013) Evaluation of SSMIS upper atmosphere sounding channels for high-altitude data assimilation. Mon Weather Rev 141:3314–3330

    Article  Google Scholar 

  • Hostetler CA, Gardner CS (1994) Observations of horizontal and vertical wave number spectra of gravity wave motions in the stratosphere and mesosphere over the mid-Pacific. J Geophys Res 99:1283–1302

    Article  Google Scholar 

  • Jacobi Ch, Fröhlich K, Viehweg C, Stober G, Kürschner D (2007) Midlatitude MLT meridional winds and temperatures measured with meteor radar. Adv Space Res 39(8):1278–1283

    Article  Google Scholar 

  • Kulichkov SN (2002) Conservation of “Acoustic Momentum” during long-range infrasonic propagation in the atmosphere. Izv Atmos Ocean Phys 38(5):582–587

    Google Scholar 

  • Kulichkov SN (2008) Evidence for nonlinear atmospheric effects in infrasound propagation from explosions of different types and yields. In: International symposium on nonlinear acoustics (ISNA2008)

    Google Scholar 

  • Kulichkov SN, Bush GA (2001) Rapid variations of infrasonic signals from similar explosions at long distances. Izv Atmos Ocean Phys 37(3):331–338

    Google Scholar 

  • Kulichkov SN, Bush GA, Svertilov AI (2002) New type of infrasonic arrivals in the geometric shadow region at long distances from explosions. Izv Atmos Ocean Phys 38(4):397–402

    Google Scholar 

  • Kulichkov SN (2004) Long-range propagation and scattering of low-frequency sound pulses in the middle atmosphere. Meteorol Atmos Phys 85(1–3):47–60

    Google Scholar 

  • Kulichkov S (2010) On the Prospects for Acoustic Sounding of the Fine Structure of the Middle Atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New Yoork, pp 511–540

    Chapter  Google Scholar 

  • Kulichkov SN, Chunchuzov IP, Perepelkin VG, Svertilov AI, Baryshnikov AK (2007) On the influence of anisotropic turbulence on fluctuations in the azimuths and grazing angles of acoustic signals in the lower and middle atmosphere. InfraMatics 18(June):1–5

    Google Scholar 

  • Kulichkov SN, Bush GA, Chunchuzov IP, Mishenin AA, Golikova EV (2016) Space-time variability of the fine structure of the upper atmosphere according to the infrasound probing data. Izv Atmos Ocean Phys 52(2):200–212

    Article  Google Scholar 

  • Larsen MF (2002) Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J Geophys Res: Space Phys 107(A8): SIA 28-1–SIA 28-14

    Article  Google Scholar 

  • Le Pichon A, Blanc E, Drob DP, Lambotte S, Dessa JX, Lardy M, Bani P, Vergniolle S (2005) Infrasound monitoring of volcanoes to probe high-altitude winds. J Geophys Res 110:D13106. https://doi.org/10.1029/2004JD005587

    Article  Google Scholar 

  • Le Pichon A, Vergoz J, Cansi Y, Geranna L, Drob D (2010) Contribution of infrasound monitoring for atmospheric remote sensing. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, New York, pp 629–646

    Chapter  Google Scholar 

  • Le Pichon A, Ceranna L, Vergoz J, Tailpied D (2019) Modeling the detection capability of the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 593–604

    Google Scholar 

  • Lighthill J (1978) Waves in fluids. Cambridge University Press, 504 pp

    Google Scholar 

  • Lindborg E (2006) The energy cascade in a strongly stratified fluid. J Fluid Mech 550:207–242

    Article  Google Scholar 

  • Lindborg E (2007) Horizontal wavenumber spectra of vertical vorticity and horizontal divergence in the upper troposphere and lower stratosphere. J Atmos Sci 64:1017–1025. https://doi.org/10.1175/JAS3864.1

    Article  Google Scholar 

  • Liszka L, Enell CF, Raita T (2009) Infrasound in the atmosphere—towards a new propagation model. InfraMatics 24:1–14

    Google Scholar 

  • Lumley JL (1964) The spectrum of nearly inertial turbulence in a stably stratified fluid. J Atmos Sci 21:99–102

    Article  Google Scholar 

  • Manson AH (1990) Gravity wave horizontal and vertical wavelengths: an update of measurements in the mesopause region (∼80–100 km). J Atmos Sci 47:2765–2773

    Article  Google Scholar 

  • Murayama Y, Tsuda T, Nakamura T, Kato S, Fukao S (1992) Seasonal variation of gravity wave activity in the middle atmosphere observed with the MU RADAR. In: Proceedings of the international symposium middle atmosphere science (MAS symposium 1992), Kyoto, Japan, March 23–27, pp 24–25

    Google Scholar 

  • Marty J (2014) Overview of the IMS infrasound network and engineering projects. In: Presentation at infrasound technology workshop (ITW 2014), Vienna, 13–16 Oct 2014

    Google Scholar 

  • Medvedev AS, Klaassen GP (1995) Vertical evolution of gravity wave spectra and the parameterization of associated wave drag. J Geophys Res 100(D12):25841–25853. https://doi.org/10.1029/95JD02533

    Article  Google Scholar 

  • Merzlyakov E, Pancheva D, Mitchell N, Forbes JM, Portnyagin YuI, Palo S, Makarova N, Muller HG (2004) High- and mid-latitude quasi-2-day waves observed simultaneously by four meteor radars during summer 2000. Ann Geophys 22:773–788

    Article  Google Scholar 

  • Nappo CJ (2002) An introduction to atmospheric gravity waves. Academic Press

    Google Scholar 

  • Norris D (2005) Broadband propagation modeling and scattering. In: Presentation at infrasound technology workshop (ITW 2005), Tahiti

    Google Scholar 

  • Norris D, Gibson R, Bongiovanni K (2010) Numerical methods to model infrasonic propagation through realistic specifications of the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, chap. 17. Springer, New York, pp 541–573

    Google Scholar 

  • Ostashev VE, Chunchuzov IP, Wilson DK (2005) Sound propagation through and scattering by internal gravity waves in a stably stratified atmosphere. J Acoust Soc Am 118(6):3420–3429

    Article  Google Scholar 

  • Pinkel R (2008) Advection, phase distortion, and the frequency spectrum of finescale fields in the sea. J Phys Oceanogr 38:291–313

    Article  Google Scholar 

  • Phillips OM (1967) Theoretical and experimental study of gravity wave interactions. In: Lighthill MJ (ed) Proceedings of the royal society: a discussion on nonlinear theory of wave propagation in dispersive system, London. Series A, mathematical and physical sciences, vol 299, 1456, pp 141–160

    Google Scholar 

  • Portnyagin Yu, Solovjova T, Merzlyakov E, Forbes J, Palo S, Ortland D, Hocking W et al (2004) Mesosphere/lower thermosphere prevailing wind model. Adv Space Res 34:1755–1762

    Article  Google Scholar 

  • Rogers PH, Maglieri DJ (2015) Concorde booms and the mysterious east coast noises. Acoust Today 11(2):34–40

    Google Scholar 

  • Rüfenacht R, Kämpfer N, Murk A (2012) First middle-atmospheric zonal wind profile measurements with a new ground-based microwave doppler-spectro-radiometer. Atmos Meas Tech 5:2647–2659

    Article  Google Scholar 

  • Shur GN (1962) Experimental investigation of the energy spectrum of atmospheric turbulence. Trudy tsent Aerol Obser, 79–90

    Google Scholar 

  • Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119. https://doi.org/10.1002/2014jd021905

    Google Scholar 

  • Smets P, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755

    Google Scholar 

  • Smith SA, Fritts DC, VanZandt TE (1987) Evidence for a saturated spectrum of atmospheric gravity waves. J Atmos Sci 44:1404–1410

    Article  Google Scholar 

  • Sukoriansky S, Galperin B (2013) An analytical theory of the buoyancy–Kolmogorov subrange transition in turbulent flows with stable stratification. Phil Trans R Soc A 371:20120212. https://doi.org/10.1098/rsta.2012.0212

    Article  Google Scholar 

  • Tsuda T et al (1992) Characteristics of gravity waves in the middle atmosphere observed with rocketsondes at Uchinoura during DYANA campaign. In: Proceedings of the international symposium middle atmosphere science (MAS symposium), 1992, Kyoto, Japan, March 23–27, pp 141–143

    Google Scholar 

  • Tsuda T (2014) Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation. In: Proceedings of the Japan Academy. Series B 90, vol 90, pp 12–27

    Article  Google Scholar 

  • VanZandt TE (1982) A universal spectrum of buoyancy waves in the atmosphere. Geophys Res Lett 9:575–578

    Article  Google Scholar 

  • Vinnichenko NK, Pinus NZ, Shmeter SM, Shur GN (1980) Turbulence in the free atmosphere, 2nd edn. Plenum, New York, p 310

    Book  Google Scholar 

  • Vincent RA, Allen SJ, Eckermann SD (1997) Gravity -Wave Parameters in the Lower Stratosphere. In: Hamilton K, Series NATOASI (eds) Gravity wave processes, their parameterization in global climate models. Springer, Berlin, pp 7–25

    Chapter  Google Scholar 

  • Warner CD, McIntyre ME (1996) On the propagation and dissipation of gravity wave spectra through a realistic middle atmosphere. J Atmos Sci 53:3213–3235

    Article  Google Scholar 

  • Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549

    Google Scholar 

  • Weinstock J (1985) Effect of gravity waves on turbulence decay in stratified fluids. J Fluid Mech 140:11–26

    Article  Google Scholar 

  • Weinstock J (1990) Saturated and unsaturated spectra of gravity waves and scale-dependent diffusion. J Atmos Sci 47:2211–2225

    Article  Google Scholar 

  • Whipple FJW (1923) The high temperature of the upper atmosphere as an explanation of zones of audibility. Nature 111:187

    Article  Google Scholar 

  • Whipple FJW (1939) The upper atmosphere, density and temperature, direct measurements and sound evidence. Q J R Meteorol Soc 65:319–323

    Article  Google Scholar 

  • Wu DL, Schwartz MJ, Waters JW, Limpasuvan V, Wu Q, Killeen TL (2008) Mesospheric Doppler wind measurements from aura microwave limb sounder (MLS). Adv Space Res 42:1246–1252. https://doi.org/10.1016/j.asr.2007.06.014

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Assink and R. Waxler for useful discussion of this work. This work was supported by European project ARISE and Russian grants RSF 14-27-00134 (Sects. 16.216.4) and RFBR 15-05-03461 (Sects. 16.516.7), 16-05-00438 (Sects. 16.816.12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Chunchuzov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chunchuzov, I., Kulichkov, S. (2019). Internal Gravity Wave Perturbations and Their Impacts on Infrasound Propagation in the Atmosphere. In: Le Pichon, A., Blanc, E., Hauchecorne, A. (eds) Infrasound Monitoring for Atmospheric Studies. Springer, Cham. https://doi.org/10.1007/978-3-319-75140-5_16

Download citation

Publish with us

Policies and ethics