Advertisement

Meteorology, Climatology, and Upper Atmospheric Composition for Infrasound Propagation Modeling

  • Douglas DrobEmail author
Chapter

Abstract

Over the last decade, there have been improvements in global data assimilation capabilities of the lower, middle, and upper atmosphere. This includes mesoscale specification capabilities for the troposphere. This chapter provides an overview of both operational and basic scientific research specifications of the atmosphere from the ground to the thermosphere that are available for the calculation of infrasound propagation characteristics. This review is intended for scientific experts, nonexperts, researchers, educators, and policy makers alike. As atmospheric specifications for the lower and middle atmosphere are now readily available, less uncertain, and also described in other chapters of this book, some additional emphasis is placed on the challenges associated with upper atmospheric specifications for modeling thermospherically ducted infrasound propagation. Otherwise, no particular emphasis is placed on any one atmospheric specification system or institutional data provider; nor anyone particular infrasound propagation application, i.e., local, regional, global, man-made, or natural.

Notes

Acknowledgements

This work was supported by the Chief of Naval Research.

References

  1. Abbott BP et al (2016) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116(061):102.  https://doi.org/10.1103/PhysRevLett.116.061102
  2. Akmaev R (2011) Whole atmosphere modeling: connecting terrestrial and space weather. Rev Geophys 49(4)Google Scholar
  3. Andrews DG, Holton JR, Leovy CB (1987) Middle atmosphere dynamics, vol 40. Academic pressGoogle Scholar
  4. Assink J, Waxler R, Frazier W, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res Atmos 118(19)Google Scholar
  5. Bass HE, Hetzer CH, Raspet R (2007) On the speed of sound in the atmosphere as a function of altitude and frequency. J Geophys Res Atmos 112(D15)Google Scholar
  6. Bauer P, Thorpe A, Brunet G (2015) The quiet revolution of numerical weather prediction. Nature 525(7567):47–55CrossRefGoogle Scholar
  7. Bednarz EM, Maycock AC, Abraham NL, Braesicke P, Dessens O, Pyle JA (2016) Future arctic ozone recovery: the importance of chemistry and dynamics. Atmos Chem Phys 16(18):12,159–12,176CrossRefGoogle Scholar
  8. Blom PS, Marcillo O, Arrowsmith SJ (2015) Improved bayesian infrasonic source localization for regional infrasound. Geophys J Int 203(3):1682–1693CrossRefGoogle Scholar
  9. Bonavita M, Hólm E, Isaksen L, Fisher M (2016) The evolution of the ECMWF hybrid data assimilation system. Q J R Meteorol Soc 142(694):287–303CrossRefGoogle Scholar
  10. Bosilovich M, Akella S, Coy L, Cullather R, Draper C, Gelaro R, Kovach R, Liu Q, Molod A, Norris P et al (2015) Merra-2: initial evaluation of the climate. NASA Technical report series on global modeling and data assimilation, NASA/TM-2015 104606Google Scholar
  11. Butchart N, Charlton-Perez A, Cionni I, Hardiman S, Haynes P, Krüger K, Kushner P, Newman P, Osprey S, Perlwitz J et al (2011) Multimodel climate and variability of the stratosphere. J Geophys Res Atmos 116(D5)Google Scholar
  12. Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590Google Scholar
  13. Chunchuzov I, Kulichkov S, Popov O, Waxler R, Assink J (2011) Infrasound scattering from atmospheric anisotropic inhomogeneities. Izv Atmos Oceanic Phys 47(5):540–557CrossRefGoogle Scholar
  14. Costantino L, Heinrich P, Mzé N, Hauchecorne A (2015) Convective gravity wave propagation and breaking in the stratosphere: comparison between WRF model simulations and lidar data. Ann Geophys 33(9):1155–1171.  https://doi.org/10.5194/angeo-33-1155-2015, http://www.ann-geophys.net/33/1155/2015/CrossRefGoogle Scholar
  15. Courtier P, Thépaut JN, Hollingsworth A (1994) A strategy for operational implementation of 4D-Var, using an incremental approach. Q J R Meteorol Soc 120(519):1367–1387CrossRefGoogle Scholar
  16. Coy L, Wargan K, Molod AM, McCarty WR, Pawson S (2016) Structure and dynamics of the quasi-biennial oscillation in MERRA-2. J Clim (2016)Google Scholar
  17. Cugnet D, de la Camara A, Lott F, Millet C, Ribstein B (2019) Non-orographic gravity waves: representation in climate models and effects on infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 827–844Google Scholar
  18. Daley R (1993) Atmospheric data analysis, no 2. Cambridge university pressGoogle Scholar
  19. de Groot-Hedlin CD, Hedlin MA (2015) A method for detecting and locating geophysical events using groups of arrays. Geophys J Int 203(2):960–971Google Scholar
  20. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  21. Douglass A, Strahan S, Oman L, Stolarski R (2014) Understanding differences in chemistry climate model projections of stratospheric ozone. J Geophys Res Atmos 119(8):4922–4939CrossRefGoogle Scholar
  22. Drob DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdie KA, McDonald SE et al (2015) An update to the horizontal wind model (HWM): the quiet time thermosphere. Earth Space Sci 2(7):301–319CrossRefGoogle Scholar
  23. Drob DP, Garcés M, Hedlin M, Brachet N (2010a) The temporal morphology of infrasound propagation. Pure Appl Geophys 167(4–5):437–453CrossRefGoogle Scholar
  24. Drob DP, Meier R, Picone JM, Garcés MM (2010b) Inversion of infrasound signals for passive atmospheric remote sensing. Infrasound monitoring for atmospheric studies. Springer, pp 701–731Google Scholar
  25. Drob DP, Picone J, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res Atmos 108(D21)Google Scholar
  26. Drob D, Broutman D, Hedlin M, Winslow N, Gibson R (2013) A method for specifying atmospheric gravity wavefields for long-range infrasound propagation calculations. J Geophys Res Atmos 118(10):3933–3943Google Scholar
  27. Edwards PN (2010) A vast machine: computer models, climate data, and the politics of global warming. Mit PressGoogle Scholar
  28. Ern M, Preusse P, Warner C (2006) Some experimental constraints for spectral parameters used in the Warner and Mcintyre gravity wave parameterization scheme. Atmos Chem Phys 6(12):4361–4381CrossRefGoogle Scholar
  29. Ern M, Trinh QT, Kaufmann M, Krisch I, Preusse P, Ungermann J, Zhu Y, Gille JC, Mlynczak MG, Russell III JM, Schwartz MJ, Riese M (2016) Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings. Atmos Chem Phys 16(15):9983–10,019.  https://doi.org/10.5194/acp-16-9983-2016, http://www.atmos-chem-phys.net/16/9983/2016/CrossRefGoogle Scholar
  30. Evers L, Geyt A, Smets P, Fricke J (2012) Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones. J Geophys Res Atmos 117(D6)CrossRefGoogle Scholar
  31. Evers L, Haak H (2007) Infrasonic forerunners: exceptionally fast acoustic phases. Geophys Res Lett 34(10)Google Scholar
  32. Fleagle RG, Businger JA (1981) An introduction to atmospheric physics, vol 25. Academic PressGoogle Scholar
  33. Forbes JM, Wu D (2006) Solar tides as revealed by measurements of mesosphere temperature by the MLS experiment on UARS. J Atmos Sci 63(7):1776–1797CrossRefGoogle Scholar
  34. Franke S, Chu X, Liu A, Hocking W (2005) Comparison of meteor radar and Na Doppler lidar measurements of winds in the mesopause region above Maui, Hawaii. J Geophys Res Atmos 110(D9)Google Scholar
  35. Fritts DC, Alexander MJ (2003) Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys 41(1)Google Scholar
  36. Fuller-Rowell TJ, Rees D (1980) A three-dimensional time-dependent global model of the thermosphere. J Atmos Sci 37(11):2545–2567CrossRefGoogle Scholar
  37. Fuller-Rowell T, Codrescu M, Moffett R, Quegan S (1994) Response of the thermosphere and ionosphere to geomagnetic storms. J Geophys Res Space Phys 99(A3):3893–3914CrossRefGoogle Scholar
  38. Fuller-Rowell T, Millward G, Richmond A, Codrescu M (2002) Storm-time changes in the upper atmosphere at low latitudes. J Atmos Solar Terr Phys 64(12):1383–1391CrossRefGoogle Scholar
  39. Funatsu BM, Claud C, Keckhut P, Hauchecorne A, Leblanc T (2016) Regional and seasonal stratospheric temperature trends in the last decade (2002–2014) from AMSU observations. J Geophys Res Atmos 121(14):8172–8185Google Scholar
  40. Garcés MA, Hansen RA, Lindquist KG (1998) Traveltimes for infrasonic waves propagating in a stratified atmosphere. Geophys J Int 135(1):255–263Google Scholar
  41. Garcia RR, López-Puertas M, Funke B, Kinnison DE, Marsh DR, Qian L (2016) On the secular trend of COx and CO2 in the lower thermosphere. J Geophys Res Atmos 121(7):3634–3644Google Scholar
  42. Geller MA, Alexander MJ, Love PT, Bacmeister J, Ern M, Hertzog A, Manzini E, Preusse P, Sato K, Scaife AA et al (2013) A comparison between gravity wave momentum fluxes in observations and climate models. J Clim 26(17):6383–6405CrossRefGoogle Scholar
  43. Georges T, Beasley WH (1977) Refraction of infrasound by upper-atmospheric winds. J Acoust Soc Am 61(1):28–34CrossRefGoogle Scholar
  44. Giraldo FX, Restelli M (2008) A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: equation sets and test cases. J Comput Phys 227(8):3849–3877CrossRefGoogle Scholar
  45. Gombosi TI (1994) Gaskinetic theory, no 9. Cambridge University PressGoogle Scholar
  46. Gossard EE, Hooke WH (1975) Waves in the atmosphere: atmospheric infrasound and gravity waves-their generation and propagation. Atmos Sci 2Google Scholar
  47. Green DN, Vergoz J, Gibson R, Le Pichon A, Ceranna L (2011) Infrasound radiated by the Gerdec and Chelopechene explosions: propagation along unexpected paths. Geophys J Int 185(2):890–910CrossRefGoogle Scholar
  48. Harada Y, Kamahori H, Kobayashi C, Endo H, Kobayashi S, Ota Y, Onoda H, Onogi K, Miyaoka K, Takahashi K (2016) The JRA-55 reanalysis: representation of atmospheric circulation and climate variability. J Meteorol Soc Jpn Ser II 94(3):269–302.  https://doi.org/10.2151/jmsj.2016-015CrossRefGoogle Scholar
  49. Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res Space Phys 92(A5):4649–4662CrossRefGoogle Scholar
  50. Hedlin MA, Drob DP (2014) Statistical characterization of atmospheric gravity waves by seismoacoustic observations. J Geophys Res Atmos 119(9):5345–5363Google Scholar
  51. Hedlin MA, Walker KT (2013) A study of infrasonic anisotropy and multipathing in the atmosphere using seismic networks. Phil Trans R Soc A 371(1984):20110,542CrossRefGoogle Scholar
  52. Hertzog A, Alexander MJ, Plougonven R (2012) On the intermittency of gravity wave momentum flux in the stratosphere. J Atmos Sci 69(11):3433–3448CrossRefGoogle Scholar
  53. Hines CO (1960) Internal atmospheric gravity waves at ionospheric heights. Can J Phys 38(11):1441–1481CrossRefGoogle Scholar
  54. Honda Y, Nishijima M, Koizumi K, Ohta Y, Tamiya K, Kawabata T, Tsuyuki T (2005) A pre-operational variational data assimilation system for a non-hydrostatic model at the Japan meteorological agency: formulation and preliminary results. Q J R Meteorol Soc 131(613):3465–3475CrossRefGoogle Scholar
  55. Houtekamer PL, Zhang F (2016) Review of the ensemble kalman filter for atmospheric data assimilation. Monthly Weather Rev 144(12):4489–4532.  https://doi.org/10.1175/MWR-D-15-0440.1CrossRefGoogle Scholar
  56. Jewtoukoff V, Hertzog A, Plougonven R, Adl Cámara, Lott F (2015) Comparison of gravity waves in the southern hemisphere derived from balloon observations and the ECMWF analyses. J Atmos Sci 72(9):3449–3468CrossRefGoogle Scholar
  57. Jin H, Miyoshi Y, Fujiwara H, Shinagawa H, Terada K, Terada N, Ishii M, Otsuka Y, Saito A (2011) Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new earth’s whole atmosphere-ionosphere coupled model. J Geophys Res Space Phys 116(A1)CrossRefGoogle Scholar
  58. Kidston J, Scaife AA, Hardiman SC, Mitchell DM, Butchart N, Baldwin MP, Gray LJ (2015) Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nature Geosci 8(6):433–440CrossRefGoogle Scholar
  59. Kulichkov S, Chunchuzov I, Popov O (2010) Simulating the influence of an atmospheric fine inhomogeneous structure on long-range propagation of pulsed acoustic signals. Izv Atmos Oceanic Phys 46(1):60–68CrossRefGoogle Scholar
  60. Lacanna G, Ichihara M, Iwakuni M, Takeo M, Iguchi M, Ripepe M (2014) Influence of atmospheric structure and topography on infrasonic wave propagation. J Geophys Res Solid Earth 119(4):2988–3005Google Scholar
  61. Lalande JM, Waxler R (2016) The interaction between infrasonic waves and gravity wave perturbations: Application to observations using UTTR rocket motor fuel elimination events. J Geophys Res AtmosGoogle Scholar
  62. Le Pichon A, Garcés M, Blanc E, Barthélémy M, Drob DP (2002) Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J Acoust Soc Am 111(1):629–641Google Scholar
  63. LeGrande AN, Tsigaridis K, Bauer SE (2016) Role of atmospheric chemistry in the climate impacts of stratospheric volcanic injections. Nature GeosciGoogle Scholar
  64. Liu AZ, Hocking WK, Franke SJ, Thayaparan T (2002) Comparison of Na lidar and meteor radar wind measurements at Starfire Optical Range, NM, USA. J Atmos Solar Terr Phys 64(1):31–40CrossRefGoogle Scholar
  65. Liu HL, Foster B, Hagan M, McInerney J, Maute A, Qian L, Richmond A, Roble R, Solomon S, Garcia R et al (2010) Thermosphere extension of the whole atmosphere community climate model. J Geophys Res Space Phys 115(A12)Google Scholar
  66. Liu HL (2016) Variability and predictability of the space environment as related to lower atmosphere forcing. Space WeatherGoogle Scholar
  67. Lonzaga JB, Waxler RM, Assink JD, Talmadge CL (2015) Modelling waveforms of infrasound arrivals from impulsive sources using weakly non-linear ray theory. Geophys J Int 200(3):1347–1361CrossRefGoogle Scholar
  68. Lorenc AC (2003) The potential of the ensemble Kalman filter for NWP–a comparison with 4D-Var. Q J R Meteorol Soc 129(595):3183–3203CrossRefGoogle Scholar
  69. Marcillo O, Arrowsmith S, Whitaker R, Anderson D, Nippress A, Green DN, Drob D (2013) Using physics-based priors in a Bayesian algorithm to enhance infrasound source location. Geophys J Int 353Google Scholar
  70. Marsh DR (2011) Chemical–dynamical coupling in the mesosphere and lower thermosphere. Aeronomy of the earth’s atmosphere and ionosphere. Springer, pp 3–17Google Scholar
  71. Millet C, Robinet JC, Roblin C (2007) On using computational aeroacoustics for long-range propagation of infrasounds in realistic atmospheres. Geophys Res Lett 34(14)Google Scholar
  72. Mohr PJ, Taylor BN, Newell DB (2012) CODATA recommended values of the fundamental physical constants: 2010. J Phys Chem Ref Data 41(4):043,109Google Scholar
  73. Orr A, Bechtold P, Scinocca J, Ern M, Janiskova M (2010) Improved middle atmosphere climate and forecasts in the ECMWF model through a nonorographic gravity wave drag parameterization. J Clim 23(22):5905–5926CrossRefGoogle Scholar
  74. Pedatella N, Richmond A, Maute A, Liu HL (2016) Impact of semidiurnal tidal variability during SSWS on the mean state of the ionosphere and thermosphere. J Geophys Res Space Phys 121(8):8077–8088Google Scholar
  75. Picone J, Hedin A, Drob DP, Aikin A (2002) NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res Space Phys 107(A12)CrossRefGoogle Scholar
  76. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361CrossRefGoogle Scholar
  77. Preusse P, Ern M, Bechtold P, Eckermann SD, Kalisch S, Trinh QT, Riese M (2014) Characteristics of gravity waves resolved by ECMWF. Atmos Chem Phys 14(19):10,483–10,508.  https://doi.org/10.5194/acp-14-10483-2014, http://www.atmos-chem-phys.net/14/10483/2014/CrossRefGoogle Scholar
  78. Rabier F, Järvinen H, Klinker E, Mahfouf JF, Simmons A (2000) The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q J R Meteorol Soc 126(564):1143–1170CrossRefGoogle Scholar
  79. Rees MH (1989) Physics and chemistry of the upper atmosphere, vol 1. Cambridge University PressGoogle Scholar
  80. Richmond A, Ridley E, Roble R (1992) A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys Res Lett 19(6):601–604CrossRefGoogle Scholar
  81. Ridley A, Deng Y, Toth G (2006) The global ionosphere-thermosphere model. J Atmos Solar Terr Phys 68(8):839–864CrossRefGoogle Scholar
  82. Rind D (1978) Investigation of the lower thermosphere results of ten years of continuous observations with natural infrasound. J Atmos Terr Phys 40(10–11):1199–1209CrossRefGoogle Scholar
  83. Rishbeth H, Müller-Wodarg I (1999) Vertical circulation and thermospheric composition: a modelling study. Ann Geophys 17:794–805. SpringerGoogle Scholar
  84. Roble R (1983) Dynamics of the earth’s thermosphere. Rev Geophys 21(2):217–233CrossRefGoogle Scholar
  85. Roble R (2000) On the feasibility of developing a global atmospheric model extending from the ground to the exosphere. Atmos Sci Across Stratopause 53–67Google Scholar
  86. Roble R, Ridley E (1994) A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30–500 km). Geophys Res Lett 21(6):417–420CrossRefGoogle Scholar
  87. Sabatini R, Bailly C, Marsden O, Gainville O (2016) Characterization of absorption and non-linear effects in infrasound propagation using an augmented burgers’ equation. Geophys J Int 207(3):1432–1445CrossRefGoogle Scholar
  88. Saha S, Moorthi S, Wu X, Wang J, Nadiga S, Tripp P, Behringer D, Hou YT, Hy Chuang, Iredell M et al (2014) The NCEP climate forecast system version 2. J Clim 27(6):2185–2208CrossRefGoogle Scholar
  89. Saito K, Ishida JI, Aranami K, Hara T, Segawa T, Narita M, Honda Y (2007) Nonhydrostatic atmospheric models and operational development at JMA. J Meteorol Soc Jpn Ser II 85:271–304CrossRefGoogle Scholar
  90. Sassi F, Liu HL (2014) Westward traveling planetary wave events in the lower thermosphere during solar minimum conditions simulated by SD-WACCM-X. J Atmos Solar Terr Phys 119:11–26CrossRefGoogle Scholar
  91. Schmidt H, Brasseur G, Charron M, Manzini E, Giorgetta M, Diehl T, Fomichev V, Kinnison D, Marsh D, Walters S (2006) The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and co2 doubling. J Clim 19(16):3903–3931CrossRefGoogle Scholar
  92. Schunk R, Nagy A (2009) Ionospheres: physics, plasma physics, and chemistry. Cambridge University PressGoogle Scholar
  93. Siskind DE, Drob DP (2014) Use of NOGAPS-ALPHA as a bottom boundary for the NCAR/TIEGCM. Model Ionosphere Thermosphere Syst 171–180Google Scholar
  94. Smets P, Evers L, Näsholm S, Gibbons S (2015) Probabilistic infrasound propagation using realistic atmospheric perturbations. Geophys Res Lett 42(15):6510–6517CrossRefGoogle Scholar
  95. Solomon S, Kinnison D, Bandoro J, Garcia R (2015) Simulation of polar ozone depletion: an update. J Geophys Res Atmos 120(15):7958–7974Google Scholar
  96. Stauffer DR, Seaman NL (1990) Use of four-dimensional data assimilation in a limited-area mesoscale model. part I: experiments with synoptic-scale data. Monthly Weather Rev 118(6):1250–1277CrossRefGoogle Scholar
  97. Suzuki S, Nakamura T, Ejiri MK, Tsutsumi M, Shiokawa K, Kawahara TD (2010) Simultaneous airglow, lidar, and radar measurements of mesospheric gravity waves over japan. J Geophys Res Atmos 115(D24)Google Scholar
  98. Toth Z, Kalnay E, Tracton SM, Wobus R, Irwin J (1997) A synoptic evaluation of the NCEP ensemble. Weather Forecast 12(1):140–153CrossRefGoogle Scholar
  99. Walker KT, Shelby R, Hedlin MA, Groot-Hedlin C, Vernon F (2011) Western us infrasonic catalog: Illuminating infrasonic hot spots with the USArray. J Geophys Res Solid Earth 116(B12)Google Scholar
  100. Warner TT (2010) Numerical weather and climate prediction. Cambridge University PressGoogle Scholar
  101. Warner C, McIntyre M (2001) An ultrasimple spectral parameterization for nonorographic gravity waves. J Atmos Sci 58(14):1837–1857CrossRefGoogle Scholar
  102. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  103. Zhang H, Pu Z (2010) Beating the uncertainties: ensemble forecasting and ensemble-based data assimilation in modern numerical weather prediction. Adv Meteorol 2010Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Naval Research LaboratoryWashingtonUSA

Personalised recommendations