Advertisement

Systematic Array Processing of a Decade of Global IMS Infrasound Data

  • Lars CerannaEmail author
  • Robin Matoza
  • Patrick Hupe
  • Alexis Le Pichon
  • Matthieu Landès
Chapter

Abstract

The ability of the International Monitoring System (IMS) global infrasound network to detect atmospheric explosions and other events of interest depends strongly on station-specific ambient incoherent noise and clutter (real but unwanted infrasound waves, coherent on an infrasound array). Characterization of coherent infrasound is important for quantifying the recording environment at each station and for assessing the detection probability of specific signals of interest. We systematically characterize coherent infrasound recorded by the IMS network over 10 years on 41 stations over a broad frequency range (0.01–5 Hz). This multiyear processing emphasizes continuous signals such as mountain associated waves and microbaroms, as well as persistent transient signals such as repetitive volcanic, surf, thunder, or anthropogenic activity. We estimate the primary source regions of continuous coherent infrasound using a global cross-bearings approach. For most IMS arrays, the detection of persistent sources is controlled by the dynamics of the stratospheric wind circulation from daily to seasonal scales. Systematic and continuous characterization of multiyear array detections helps to refine knowledge of the source of ambient ocean noise and provides additional constraints on the dynamics of the middle atmosphere where data coverage is sparse.

Notes

Acknowledgements

We thank the CTBTO and station operators for guaranteeing the high quality of the infrasound data. This work was performed during the course of the ARISE design study (http://arise-project.eu), funded under the H2020 Framework Programme of the European Union (grant 653980).

References

  1. Ardhuin F, Herbers THC (2013) Noise generation in the solid Earth, oceans and atmosphere, from nonlinear interacting surface, gravity waves infinite depth. J Fluid Mech 716:316–348.  https://doi.org/10.1017/jfm.2012.548CrossRefGoogle Scholar
  2. Assink JD, Waxler R, Frazier WG, Lonzaga J (2013) The estimation of upper atmospheric wind model updates from infrasound data. J Geophys Res 118.  https://doi.org/10.1002/jgrd.50833Google Scholar
  3. Assink JD, Le Pichon A, Blanc E, Kallel M, Khemiri L (2014) Evaluation of wind and temperature profiles from ECMWF analysis on two hemispheres using volcanic infrasound. J Geophys Res Atmos 119.  https://doi.org/10.1002/2014jd021632Google Scholar
  4. Assink J, Smets P, Marcillo O, Weemstra C, Lalande J-M, Waxler R, Evers L (2019) Advances in infrasonic remote sensing methods. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 605–632Google Scholar
  5. Blanc E, Pol K, Le Pichon A, Hauchecorne A, Keckhut P, Baumgarten G, Hildebrand J, Höffner J, Stober G, Hibbins R, Espy P, Rapp M, Kaifler B, Ceranna L, Hupe P, Hagen J, Rüfenacht R, Kämpfer N, Smets P (2019) Middle atmosphere variability and model uncertainties as investigated in the framework of the ARISE project. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 845–887Google Scholar
  6. Brachet N, Brown D, Le Bras R, Mialle P, Coyne J (2010) Infrasound monitoring for atmospheric studies, chapter monitoring the earth’s atmosphere with the global IMS infrasound network. Springer, Dordrecht, pp 77–118. ISBN:978-1-4020-9507-8Google Scholar
  7. Campus P, Christie DR (2010) Infrasound monitoring for atmospheric studies. In: (eds) Le Pichon A, Blanc E, Hauchecorne A, chapter Worldwide observations of infrasonic waves. Springer, Dordrecht, pp 195–234. ISBN:978-1-4020-9507-8Google Scholar
  8. Cansi Y (1995) An automatic seismic event processing for detection and location—the PMCC method. Geophys Res Lett 22:1021–1024CrossRefGoogle Scholar
  9. Charlton-Perez AJ et al (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res 118:2494–2505.  https://doi.org/10.1002/jgrd.50125CrossRefGoogle Scholar
  10. Christie DR, Campus P (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Chapter the IMS infrasound network: design and establishment of infrasound stations. Springer, Dordrecht, pp 29–76. ISBN:978-1-4020-9507-8Google Scholar
  11. Chunchuzov IP (1993) On the possible generation mechanism of non-stationary mountain waves in the atmosphere. J Atmos Sci 51:2196–2206CrossRefGoogle Scholar
  12. Chunchuzov I, Kulichkov S (2019) Internal gravity wave perturbations and their impacts on infrasound propagation in the atmosphere. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 551–590Google Scholar
  13. de Groot-Hedlin C, Hedlin M (2019) Detection of infrasound signals and sources using a dense seismic network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 669–699Google Scholar
  14. Donn WL (1973) Sea wave origin of microbaroms and microseisms. J Geophys Res 78:4482–4488CrossRefGoogle Scholar
  15. Drob D (2019) Meteorology, climatology, and upper atmospheric composition for infrasound propagation modeling. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 485–508Google Scholar
  16. Drob DP, Picone JM, Garcés M (2003) Global morphology of infrasound propagation. J Geophys Res 108:D21.  https://doi.org/10.1029/2002JD003307CrossRefGoogle Scholar
  17. Drob DP, Meier RR, Picone JM, Garcés M (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) chapter inversion of infrasound signals for passive atmospheric remote sensing, pp 701–731. Springer, Dordrecht. ISBN:978-1-4020-9507-8Google Scholar
  18. Evers LG, Siegmund P (2009) The infrasonic signature of the 2009 major Sudden Stratospheric Warming. Geophys Res Lett 36:L23808.  https://doi.org/10.1029/2009GL041323CrossRefGoogle Scholar
  19. Garcés M, Willis M, Hetzer C, Le Pichon A, Drob D (2004) On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys Res Lett 31.  https://doi.org/10.1029/2004gl020696
  20. Garcés MA (2013) On infrasound standard, part 1: time, frequency, and energy scaling, vol 2, pp 13–35. http://dx.doi.org/10.4236/inframatics.2013.22002
  21. Green DN, Bowers D (2010) Estimating the detection capability of the International Monitoring System infrasound network. J Geophys Res 115:D18116.  https://doi.org/10.1029/2010JD014017CrossRefGoogle Scholar
  22. Green DN, Le Pichon A, Ceranna L, Evers L (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A, Chapter ground truth events: assessing the capability of infrasound networks using high resolution data analyses, Springer, Dordrecht, pp 599–625. ISBN:978-1-4020-9507-8Google Scholar
  23. Green DN, Matoza RS, Vergoz J, Le Pichon A (2012) Infrasonic propagation from the 2010 Eyjafjallajökull eruption: investigating the influence of stratospheric solar tides. J Geophys Res 117:D21202.  https://doi.org/10.1029/2012JD017988CrossRefGoogle Scholar
  24. Kim YJ, Arakawa A (1993) Improvement of orographic gravity waves parameterization using a mesoscale gravity wave model. J Atmos Sci 52:1902–1975Google Scholar
  25. Lalande JM, Sèbe O, Landès M, Blanc-Benon P, Matoza RS, Le Pichon A, Blanc E (2012) Infrasound data inversion for atmospheric sounding. Geophys J Int 190.  https://doi.org/10.1111/j.1365-246x.2012.05518.xCrossRefGoogle Scholar
  26. Landès M, Ceranna L, Le Pichon A, Matoza R (2012) Localization of microbarom sources using the IMS infrasound network. J Geophys Res.  https://doi.org/10.1029/2011jd016684CrossRefGoogle Scholar
  27. Landès M, Le Pichon A, Shapiro N, Hillers G, Campillo M (2014) Explaining global patterns of microbarom observations with wave action models. Geophys J Int 2014(199):1328–1337.  https://doi.org/10.1093/gji/ggu324CrossRefGoogle Scholar
  28. Larson RJ, Craine LB, Thomas JE, Wilson CR (1971) Correlation of winds and geographic features with production of certain infrasonic signals in the atmosphere. Geophys J R Astron Soc 26:201–214CrossRefGoogle Scholar
  29. Le Pichon A, Matoza R, Brachet N, Cansi Y (2010) Recent enhancements of the PMCC infrasound signal detector. Inframatics Newslett 26:5–8. http://www.inframatics.org
  30. Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121.  https://doi.org/10.1029/2011JD016670CrossRefGoogle Scholar
  31. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rüfenacht R, Kämpfer N et al (2015) Comparison of co-located independent ground-based middle-atmospheric wind and temperature measurements with Numerical Weather Prediction models. J Geophys Res 120.  https://doi.org/10.1002/2015jd023273Google Scholar
  32. Lee C, Smets P, Charlton-Perez A, Evers L, Harrison G, Marlton G (2019) The potential impact of upper stratospheric measurements on sub-seasonal forecasts in the extra-tropics. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 889–910Google Scholar
  33. Longuet-Higgins MS (1950) A theory of the origin of microseisms. R Soc Lond Phil Trans A 243:1–35CrossRefGoogle Scholar
  34. Marty J (2019) The IMS Infrasound network: current status and technological developments. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 3–62Google Scholar
  35. Matoza R, Landès M, Le Pichon A, Ceranna L, Brown D (2013) Coherent ambient infrasound recorded by the International Monitoring System. Geophys Res Lett 40.  https://doi.org/10.1029/2012gl054329CrossRefGoogle Scholar
  36. Matoza RS, Green DN, Le Pichon A, Shearer PM, Fee D, Mialle P, Ceranna L (2017) Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J Geophys Res Solid Earth 122:2946–2971.  https://doi.org/10.1002/2016JB013356CrossRefGoogle Scholar
  37. Matoza R, Fee D, Green D, Mialle P (2019) Volcano infrasound and the international monitoring system. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1023–1077Google Scholar
  38. McFarlane MA (1987) The effect of orographically excited gravity waves drag on the general circulation of the lower stratosphere and troposphere. J Atmos Sci 44:1775–1800CrossRefGoogle Scholar
  39. Mialle P, Brown D, Arora N (2019) Advances in operational processing at the international data centre In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248Google Scholar
  40. Schimmel M, Stutzmann E, Ardhuin F, Gallart J (2011) Polarized Earth’s ambient microseismic noise. Geochem Geophys Geosyst 12:Q07014.  https://doi.org/10.1029/2011GC003661CrossRefGoogle Scholar
  41. Silber E, Brown P (2019) Infrasound monitoring as a tool to characterize impacting near-earth objects (NEOs). In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 939–986Google Scholar
  42. Smets PSM, Evers LG (2014) The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J Geophys Res 119.  https://doi.org/10.1002/2014jd021905Google Scholar
  43. Smets PSM, Assink JD, Le Pichon A, Evers LG (2016) ECMWF SSW forecast evaluation using infrasound. J Geophys Res Atmos 121.  https://doi.org/10.1002/2015jd024251Google Scholar
  44. Smets P, Assink J, Evers L (2019) The study of sudden stratospheric warmings using infrasound. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 723–755Google Scholar
  45. Smith RB, Woods K, Jensen J, Cooper WA, Doyle JD, Jiang Q, Grubisic V (2007) Mountain waves entering the stratosphere. J Atmos Sci 65.  https://doi.org/10.1175/2007JAS2598.1CrossRefGoogle Scholar
  46. Stehly L, Campillo M, Shapiro NM (2006) A study of the noise from its long-range correlation properties. J Geophys Res 111:B10306.  https://doi.org/10.1029/2005JB004237CrossRefGoogle Scholar
  47. Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:2651–2664CrossRefGoogle Scholar
  48. Waxler R, Assink J (2019) Propagation modeling through realistic atmosphere and benchmarking. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 509–549Google Scholar
  49. Wilson CR, Szuberla CA, Olson JV (2010) Infrasound monitoring for atmospheric studies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Chapter high-latitude observations of infrasound from Alaska and Antarctica: mountains associated waves and geomagnetic/auroral infrasonic signals. Springer, Dordrecht, pp 415–451. ISBN:978-1-4020-9507-8Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lars Ceranna
    • 1
    Email author
  • Robin Matoza
    • 2
  • Patrick Hupe
    • 1
  • Alexis Le Pichon
    • 3
  • Matthieu Landès
    • 4
  1. 1.BGRHannoverGermany
  2. 2.Department of Earth Science and Earth Research Institute, University of CaliforniaSanta BarbaraUSA
  3. 3.CEA, DAM, DIFArpajonFrance
  4. 4.European-Mediterranean Seismological Centre C/O, CEA, DAM, DIFArpajonFrance

Personalised recommendations