Advertisement

The IMS Infrasound Network: Current Status and Technological Developments

  • Julien MartyEmail author
Chapter

Abstract

The International Monitoring System (IMS) comprises 337 globally distributed facilities for seismic, hydroacoustic, infrasound, and radionuclide monitoring. This chapter focuses on the infrasound component of the IMS, often referred to as the IMS infrasound network. The chapter begins with an overview of the network and of the main challenges associated with its establishment, sustainability, and detection capability. It follows with a general description of IMS stations as well as with a review of the latest advances in array geometry, wind-noise reduction systems, infrasound sensors, calibration, meteorological data, data acquisition systems, and station infrastructure. This chapter is intended for researchers and engineers who are interested in the specifications, design, status, and overall capabilities of the IMS infrasound network or in the construction of state-of-the-art infrasound stations.

Notes

Acknowledgements

The author would like to thank all the PTS/IMS/ED Seismo-Acoustic Unit in alphabetical order V. Bereza, B. Doury, M. Jusko, A. Kramer, M. Lefeldt, P. Martysevich, V. Miljanovic, G. Perez, J. Robertson, Y. Sid Ahmed, and Y. Starovoit for their continuous efforts building, sustaining, and enhancing the IMS seismo-acoustic network. The author would also like to thank in alphabetical order R. Barham, P. Campus, M. Charbit, T. Gabrielson, P. Grenard, T. Héritier, A. Le Pichon, J. Merchant, J. Mattila, P. Mialle, S. Nikolova, R. Rembold, and J. Vergoz for their valuable comments to this chapter.

Disclaimer The views expressed herein are those of the author and do not necessarily reflect the views of the CTBTO Preparatory Commission.

References

  1. Alcoverro B (2008) The design and performance of infrasound noise-reducing pipe arrays. In: Havelock D, Kuwano S, Vorländer M (eds) Handbook of signal processing in acoustics. Springer, New York, pp 1473–1486CrossRefGoogle Scholar
  2. Alcoverro B, Le Pichon A (2005) Design and optimization of a noise reduction system for infrasonic measurements using elements with low acoustic impedance. J Acoust Soc Am 117:1717–1727CrossRefGoogle Scholar
  3. Alcoverro B, Martysevich P, Starovoit Y (2005) Mechanical sensitivity of microbarometers MB2000 (DASE, France) and Chaparral 5 (USA) to vertical and horizontal ground motion. InfraMatics 9:1–10Google Scholar
  4. Avison J, Barham R (2014) Report on key comparison CCAUV.A-K5: pressure calibration of laboratory standard microphones in the frequency range 2 hz to 10 kHz. Technical report, National Physical LaboratoryGoogle Scholar
  5. Bowman JR, Baker GE, Bahavar M (2005) Ambient infrasound noise. Geophys Res Lett 32:L09803CrossRefGoogle Scholar
  6. Brachet N, Brown D, Le Bras R, Mialle P, Coynr J (2010) Monitoring the Earth’s atmosphere with the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 29–75Google Scholar
  7. Brown D, Ceranna L, Prior M, Mialle P, Le Bras R (2014a) The IDC seismic, hydroacoustic and infrasound global low and high noise models. Pure Appl Geophys 171:361–375CrossRefGoogle Scholar
  8. Brown D, Szuberla C, McComarck D, Mialle P (2014b) The influence of spatial filters on infrasound array responses. Pure Appl Geophys 171:575–585CrossRefGoogle Scholar
  9. Campus P, Christie D (2010) Worldwide observations of infrasonic waves. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 29–75Google Scholar
  10. Capon J (1969) High-resolution frequency-wavenumber spectrum analysis. Proc IEEE 57(8):1408–1418CrossRefGoogle Scholar
  11. Carter J (2011) Waveform data availability and pts performance monitoring: updates and progress. WGB 37 – Waveform Expert GroupGoogle Scholar
  12. CEA/DASE (1998) Microbarometer MB2000 – Technical ManualGoogle Scholar
  13. CEA/Martec (2005) Microbarometer MB2005 – User ManualGoogle Scholar
  14. CEA/Seismowave (2014a) Microbarometer MB3a – User ManualGoogle Scholar
  15. CEA/Seismowave (2014b) Microbarometer MB3d – User ManualGoogle Scholar
  16. ChaparralPhysics (2010) Operation manual for the model 50A infrasound sensorGoogle Scholar
  17. Charbit M (2015) Loss of coherence model. Technical report, CTBTOGoogle Scholar
  18. Charbit M, Doury B, Marty J (2015) Evaluation of infrasound in-situ calibration method on a 3-month measurement campaign. Infrasound technology workshop 2015, Vienna, AustriaGoogle Scholar
  19. Che I-Y, Park J, Kim I, Kim TS, Lee H-L (2014) Infrasound signals from the underground nuclear explosions of North Korea. Geophys J Int 198:495–503CrossRefGoogle Scholar
  20. Christie D, Campus P (2010) The IMS infrasound network: design and establishment of infrasound stations. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp 29–75Google Scholar
  21. Conference on Disarmament (1995) Report of the infrasound expert group to the Ad Hoc committee on a nuclear test ban working group on verification (CD/NTB/WP.283). GenevaGoogle Scholar
  22. CTBTO (1996) Resolution establishing the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBT/MSS/RES/1)Google Scholar
  23. CTBTO (1997a) Report of working group B to the fourth session of the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization – Annex VI (CTBT/PC/IV/1/Add.2)Google Scholar
  24. CTBTO (1997b) Report of working group B to the second session of the preparatory commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBT/PC/II/1/Add.2)Google Scholar
  25. CTBTO (1999) Operational manual for seismological monitoring and the international exchange of seismological data – draft (CTBT/WGB/TL-11/2/Rev.2)Google Scholar
  26. CTBTO (2000) Command structure for IMS stations (CTBT/PTS/INF.280)Google Scholar
  27. CTBTO (2001) Report of working group B to the fifthteen session of the preparatory commission (CTBT/PC-37/WGB/1)Google Scholar
  28. CTBTO (2003) Minutes of infrasound experts meeting. UCSD, La JollaGoogle Scholar
  29. CTBTO (2008) Revalidation of performance of international monitoring system facilities (CTBT/PTS/INF.934)Google Scholar
  30. CTBTO (2009) Operational manual for infrasound monitoring and the international exchange of infrasound data – draft (CTBT/WGB/TL-11,17/17/Rev.5)Google Scholar
  31. CTBTO (2010) IMS earthing and lightning protection minimum standardGoogle Scholar
  32. CTBTO (2011a) I59US. Hawaii, USA - Revalidation ReportGoogle Scholar
  33. CTBTO (2011b) Operational manual for the international data centre – draft (CTBT/WGB/TL-11,17/19/Rev.5)Google Scholar
  34. CTBTO (2011c) Report of working group B to the thirty-seventh session of the preparatory commission (CTBT/PC-37/WGB/1)Google Scholar
  35. CTBTO (2013a) I55US. Windless Bight, Antarctica - Revalidation ReportGoogle Scholar
  36. CTBTO (2013b) I58US. Midway Islands, USA - Certification ReportGoogle Scholar
  37. CTBTO (2013c) Midterm strategy: 2014–2017 (CTBT/PTS/INF.1249)Google Scholar
  38. CTBTO (2014a) CTBTO preparatory commission IMS communication and maintenance guidelinesGoogle Scholar
  39. CTBTO (2014b) Report of working group B to the forty-third session of the preparatory commission (CTBT/PC-43/WGB/1)Google Scholar
  40. CTBTO (2015) Technical protocol for pilot study PTSAVH.A-PS1Google Scholar
  41. CTBTO (2016a) Annual report on the calibration of IMS seismic and hydroacoustic T-phase stations and sensor orientation (ECS/DIS/WGB-47/PTS-MATERIAL/11)Google Scholar
  42. CTBTO (2016b) Report of working group B to the forty-sixth session of the preparatory commission (CTBT/PC-46/WGB/1)Google Scholar
  43. CTBTO (2016c) Terms of reference for the the supply of high resolution digitizers and engineering services for IMS stationsGoogle Scholar
  44. CTBTO (2016d) Updated sections of the draft operational manual for infrasound monitoring and the international exchange of infrasound data incorporating changes agreed after the issuance of revision 5 (CTBT/WGB/TL-11,17/58/Rev.1)Google Scholar
  45. CTBTO (2017a) Failure analysis of IMS stations (ECS/WGB-48/PTS/10)Google Scholar
  46. CTBTO (2017c) Medium term strategy: 2018–2021 (CTBT/PTS/INF.1395)Google Scholar
  47. Dahlman O, Mackby J, Mykkeltveit S, Haak H (2011) Detect and deter: can countries verify the nuclear test ban?. Springer, BerlinCrossRefGoogle Scholar
  48. Daniels F (1959) Noise-reducing line microphone for frequencies below 1 cps. J Acoust Soc Am 31(4):529–531CrossRefGoogle Scholar
  49. De Groot-Hedlin C, Hedlin M, Drob D (2010) Atmospheric variability and infrasound monitoring. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, pp. 475–507Google Scholar
  50. De Wolf S, Walker K, Zumberge M, Denis S (2013) Efficacy of spatial averaging of infrasonic pressure in varying wind speeds. J Acoust Soc Am 133(5):3739Google Scholar
  51. Denis S, Le Floch C (2015) Wind noise reduction systems: complementary results. Infrasound technology workshop 2015, Vienna, AustriaGoogle Scholar
  52. Dillion K, Howard W, Shields FD (2007) Advances in distributed arrays for detection of infrasonic events. J Acoust Soc Am 122:2960CrossRefGoogle Scholar
  53. Doury B, Denis S, Jusko M, Larsonnier F, Marty J, Merchant J, Nief G, Rembold R, Slad G, Symons NCT, Waxler R (2015) Interlaboratory comparison pilot study. In: Infrasound technology workshop 2015, Vienna, AustriaGoogle Scholar
  54. Evers L, Haak H (2001) An optimal infrasound array at Apatity (Russian Federation). KNMI. ISBN: 90-369-2193-7 publication 195Google Scholar
  55. Evers LG, Haak HW (2010) The characteristics of infrasound, its propagation and some early history. In: Infrasound monitoring for atmospheric studies. Springer, pp 3–27Google Scholar
  56. Fee D, Szuberla C (2012) Proposed re-drilling of wind-noise reducing ppipe at I55US. Technical report, UAFGoogle Scholar
  57. Fee D, Szuberla C, Helmericks J, Tytgat G, Blom L, Winkleman A, Rembold R, Knox J, Gabrielson T, Talmadge C, Waxler R (2016) Preliminary results from the US NACT R&D testbed infrasound array. Infrasound technology workshop 2016, Quito, EcuadorGoogle Scholar
  58. Fee D, Waxler R, Assink J, Gitterman Y, Given J, Coyne J, Mialle P, Garcés M, Drob D, Kleinert D, Hofstetter R, Grenard P (2013) Overview of the 2009 and 2011 sayarim infrasound calibration experiments. J Geophys Res 118(12):6122–6143Google Scholar
  59. Firbas P, Brachet N (2003) Processing data from incomplete infrasound arrays. IMS workshop 2003, Vienna, AustriaGoogle Scholar
  60. Frazier G (2012) Using parametric models for wind noise for improved detection of transient acoustic signals. Infrasound technology workshop 2012, Daejon, Republic of KoreaGoogle Scholar
  61. Frazier G (2014) Application of parametric empirical Bayes estimation to enhance detection of infrasound transients. Infrasound technology workshop 2014, Vienna, AustriaGoogle Scholar
  62. Gabrielson T (2011) In situ calibration of atmospheric-infrasound sensors including the effects of wind-noise-reduction pipe systems. J Acoust Soc Am 130(3):1154–63CrossRefGoogle Scholar
  63. Gabrielson T (2013) In-situ calibration of infrasound elements: summary report (2009–2013). Technical report, Nuclear Arms Control TreatyGoogle Scholar
  64. Green DN (2015) The spatial coherence structure of infrasonic waves: analysis of data from international monitoring system arrays. Geophys J Int 201:377–389CrossRefGoogle Scholar
  65. Green DN, Bowers D (2010) Estimating the detection capability of the international monitoring system infrasound network. J Geophys Res 115(D18):D18116CrossRefGoogle Scholar
  66. Grover F (1971) Experimental noise reducers for an active microbarograph array. Geophys J R Astron Soc 26(1–4):41–52Google Scholar
  67. Hart D (2009) Evaluation of the microbarometer 2005 infrasound sensor. Technical report, Sandia National LaboratoriesGoogle Scholar
  68. Hart D, Jones K (2011) Infrasound sensor evaluation performed at the Facility for Acceptance, Calibration and Testing (FACT) site. Infrasound technology workshop 2011, Dead Sea, JordanGoogle Scholar
  69. Hart D, Rembold R (2010) Evaluation of two Chaparral physics model 50A infrasound sensors. Technical report, Sandia National LaboratoriesGoogle Scholar
  70. Hart D, Rembold R, Hedlin M, Coon C, Szuberla C, Fee D, Helmericks J, Marty J (2013) I56US Newport, WA component upgrade: evaluation of the replaced digitizers and infrasound sensors. In: Science and technology conference 2013Google Scholar
  71. Hedlin M, Alcoverro B (2005) The use of impedance matching capillaries for reducing resonance in rosette infrasonic spatial filters. J Acoust Soc Am 117(4):1880–1888CrossRefGoogle Scholar
  72. Hedlin M, Alcoverro B, D’Spain G (2003) Evaluation of rosette infrasonic noise-reducing spatial filters. J Acoust Soc Am 114:1807–1820CrossRefGoogle Scholar
  73. Hedlin M, Raspet R (2003) Infrasonic wind-noise reduction by barriers and spatial filters. J Acoust Soc Am 114(3):1379–1386CrossRefGoogle Scholar
  74. IDC (2001). IDC Documentation - Continuous Data Subsystem CD-1.1Google Scholar
  75. Kay SM (1993) Fundamentals of statistical signal processing: estimation theory. Prentice Hall, Upper Saddle RiverGoogle Scholar
  76. Kramer A, Doury B, Grasse T, Jusko M, Marty J, Charbit M, Nikolova S (2015) Progress in the integration of on-site calibration capability at IMS infrasound stations: towards measurement quality assurance. Infrasound technology workshop 2015, Vienna, AustriaGoogle Scholar
  77. Kromer R, McDonald T (2000) Infrasound sensor models and evaluation. Technical report, Sandia National LaboratoriesGoogle Scholar
  78. Krysta M (2015) Meeting of the WMO/CBS (World Meteorological Organization/Commission for Basic Systems) expert team on emergency response activities (ET-ERA). Technical report, CTBTOGoogle Scholar
  79. Lanzinger E, Schubotz K (2012) A laboratory intercomparison of static pressure heads. Technical report, WMO CIMO TECO, Brussels, BelgiumGoogle Scholar
  80. Le Pichon A (2003) Infrasound network evaluation – identified sources of instabilities. IMS workshop 2003, Vienna, AustriaGoogle Scholar
  81. Le Pichon A, Assink JD, Heinrich P, Blanc E, Charlton-Perez A, Lee CF, Keckhut P, Hauchecorne A, Rfenacht R, Kmpfer N, Drob DP, Smets PSM, Evers LG, Ceranna L, Pilger C, Ross OCC (2015) Comparison of co-located independent ground-based middle atmospheric wind and temperature measurements with numerical weather prediction models. J Geophys Res Atmos 120:8318–8331Google Scholar
  82. Le Pichon A, Ceranna L, Pilger C, Mialle P, Brown D, Herry P, Brachet N (2013) The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys Res Lett 40(14):3732–3737CrossRefGoogle Scholar
  83. Le Pichon A, Ceranna L, Vergoz J (2012) Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J Geophys Res 117:D05121CrossRefGoogle Scholar
  84. Le Pichon A, Ceranna L, Vergoz J, Tailpied D (2019) Modeling the detection capability of the global IMS infrasound network. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 593–604Google Scholar
  85. Le Pichon A, Vergoz J, Blanc E, Guilbert J, Ceranna L, Evers L, Brachet N (2009) Assessing the performance of the International monitoring system’s infrasound network: geographical coverage and temporal variabilities. J Geophys Res 114:D08112CrossRefGoogle Scholar
  86. Liszka L (2008) Infrasound: a summary of 35 years of infrasound research. IRF scientific report 291, Institutet for rymdfysik. ISBN 978-91-977255-0-7Google Scholar
  87. Mack H, Flinn E (1971) Analysis of the spatial coherence of short-period acoustic-gravity waves in the atmosphere. Geophys J R Astron Soc 26(1–4):255–269Google Scholar
  88. Marchetti E, Ripepe M, Campus P, Le Pichon A, Brachet N, Blanc E, Gaillard P, Mialle P, Husson P (2019) Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 1141–1162Google Scholar
  89. Marty J (2012) Meteorological data recorded at IMS infrasound stations. Infrasound technology workshop 2012, Daejon, Republic of KoreaGoogle Scholar
  90. Marty J (2013) IMS infrasound sensors: specifications, tests, calibration. Technical report, Infrasound Expert Group Meeting 2013, Vienna, AustriaGoogle Scholar
  91. Marty J (2014a) Infrasound sensor specifications and interlaboratory comparison. Technical report, Infrasound Expert Group Meeting 2014, Vienna, AustriaGoogle Scholar
  92. Marty J (2014b) Work and progress on the infrasound station calibration programme, including work on self-calibrating sensor. In: WGB 43 – technology refreshmentGoogle Scholar
  93. Marty J (2016) Progress on infrasound sensor calibration. In: WGB 46 – technology refreshmentGoogle Scholar
  94. Marty J (2017) Quality assurance for IMS infrasound data. Technical report, Infrasound Expert Group Meeting 2017Google Scholar
  95. Marty J, Denis S, Gabrielson T, Garcés M, Brown D (2017) Comparison and validation of acoustic response models for wind noise reduction pipe arrays. J Atmos Ocean Technol 34:401–414CrossRefGoogle Scholar
  96. Marty J, Denis S, Garcés M (2011a) Performance assessment of infrasound station IS07. Infrasound technology workshop 2011, Dead Sea, JordanGoogle Scholar
  97. Marty J, Kramer A, Mialle P (2013) IS07 major upgrade. Infrasound technology workshop 2013, Vienna, AustriaGoogle Scholar
  98. Marty J, Kramer, A, Polzer P (2012a) IMS acoustic filtering systems. Infrasound technology workshop 2012, Daejon, Republic of KoreaGoogle Scholar
  99. Marty J, Le Pichon A, Evers L (2011b) IMS wind noise reduction systems. Technical report, Infrasound Expert Group Meeting 2011, Dead Sea, JordanGoogle Scholar
  100. Marty J, Le Pichon A, Evers L (2011c) On-site calibration techniques. Technical report, Infrasound Expert Group Meeting 2011, Dead Sea, JordanGoogle Scholar
  101. Marty J, Le Pichon A, Evers L (2012b) Array geometry of IMS infrasound stations. Technical report, Infrasound Expert Group Meeting 2012, Daejeon, Republic of KoreaGoogle Scholar
  102. Marty J, Le Pichon A, Evers L (2012c) Meteorological data recorded at IMS infrasound stations. Technical report, Infrasound Expert Group Meeting 2012, Daejeon, Republic of KoreaGoogle Scholar
  103. Marty J, Ponceau D, Dalaudier F (2010) Using the international monitoring system infrasound network to study gravity waves. Geophys Res Lett 37:L19802CrossRefGoogle Scholar
  104. Martysevich P, Marty J, Polzer P (2015) Status of meteorological measurements at IMS infrasound stations. Infrasound technology workshop 2015, Vienna, AustriaGoogle Scholar
  105. McDonald J, Douze EJ, Herrin E (1971) The structure of atmospheric turbulence and its application to the design of pipe arrays. Geophys J R Astron Soc 26(1–4):99–109Google Scholar
  106. McDonald J, Herrin E (1975) Properties of pressure fluctuations in an atmospheric boundary layer. Bound -Layer Meteorol 8(3–4):419–436CrossRefGoogle Scholar
  107. McNamara DE, Buland RP (2004) Ambient noise levels in the continental united states. Bull Seismol Soc Am 94(4):1517–1527CrossRefGoogle Scholar
  108. Merchant J (2014) MB3a infrasound sensor evaluation. Technical report, Sandia National LaboratoriesGoogle Scholar
  109. Merchant J (2015) Hyperion 5113/A infrasound sensor evaluation. Technical report, Sandia National LaboratoriesGoogle Scholar
  110. Merchant J, Slad G (2015) Chaparral 50A and MB2005 infrasound sensor international evaluation comparison. Technical report, Sandia National LaboratoriesGoogle Scholar
  111. Mialle P, Brown D, Arora N, colleagues from IDC (2019) Advances in operational processing at the international data centre. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 209–248Google Scholar
  112. Nief G, Talmadge C, Rothman J, Gabrielson T (2019) New generations of infrasound sensors: technological developments and calibration. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 63–89Google Scholar
  113. Nikolova S, Araujo F, Aktas K, Malakhova M, Otsuka R, Han D, Assef T, Nava E, Mickevicius S, Agrebi A. (2015). Operation of international monitoring system network. In: EGU. (number 2015-14269 in 17)Google Scholar
  114. Nouvellet A, Charbit M, Roueff F, Le Pichon A (2013) Coherence parameters estimation from noisy observations. Infrasound technology workshop 2013, Vienna, AustriaGoogle Scholar
  115. Park J, Garcés M, Thigpen B (2009) The rotary subwoofer: a controllable infrasound source. J Acoust Soc Am 125(4):2006–2012CrossRefGoogle Scholar
  116. Pavlovski OA (1998) Radiological consequences of nuclear testing for the population of the former USSR (Input information, models, dose, and risk estimates). Springer, Berlin, pp 219–260CrossRefGoogle Scholar
  117. Ponceau D, Bosca L (2010) Specifications of low-noise broadband microbarometers. In: Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 119–140Google Scholar
  118. Rakotoarisoa T, Rambolamanana G, Randrianarinosy F, Ramanantsoa A, Andrianaivoarisoa J (2013) Infrasound station performance assessment using correlation. Infrasound technology workshop 2013, Vienna, AustriaGoogle Scholar
  119. Raspet R, Abbott J-P, Webster J, Yu J, Talmadge C, Alberts II K, Collier S, Noble J (2019) New systems for wind noise reduction for infrasonic measurements. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies, 2nd edn. Springer, Dordrecht, pp 91–124Google Scholar
  120. Raspet RJW, Dillon K (2006) Framework for wind noise studies. J Acoust Soc Am 199:834–843CrossRefGoogle Scholar
  121. Shams Q, Zuckerwar ABS (2005) Compact nonporous windscreen for infrasonic measurements. J Acoust Soc Am 118(3):1335–1340CrossRefGoogle Scholar
  122. Shields FD (2005) Low-frequency wind noise correlation in microphone arrays. J Acoust Soc Am 117:3489–3496CrossRefGoogle Scholar
  123. Starovoit Y, Kunakov V, Martysevich P (2006) About dynamical calibration of microbarometers. InfraMatics 14:1–12Google Scholar
  124. Symons GJ (1888) The eruption of Krakatoa and subsequent phenomena. Trübner, LondonGoogle Scholar
  125. Szuberla C, Fee D, Waxler R, Gabrielson T (2013) Long-term in-situ calibration of the I53US IMS array elements. Infrasound technology workshop 2013, Vienna, AustriaGoogle Scholar
  126. Szuberla C, Olson J (2004) Uncertainties associated with parameter estimation in atmospheric infrasound arrays. J Acoust Soc Am 115(1):253–258CrossRefGoogle Scholar
  127. Thomas J, Pierce A, Flinn E, Craine L (1971) Bibliography on infrasonic waves. Geophys J R Astron Soc 26:399–426CrossRefGoogle Scholar
  128. Vaisala (2005). SPH10 Static Pressure Head – Installation and Maintenance GuideGoogle Scholar
  129. Walker K, Hedlin M (2010) A review of wind-noise reduction methodologies. In: Le Pichon A, Blanc E, Hauchecorne A (eds) Infrasound monitoring for atmospheric studies. Springer, Berlin, pp 141–182Google Scholar
  130. Waxler R, Gilbert KE (2006) The radiation of atmospheric microbaroms by ocean waves. J Acoust Soc Am 119:5CrossRefGoogle Scholar
  131. Welch PD (1967) The use of fast fourier transform for the estimation of power spectra: a method based on time-averaging over short, modified periodograms. IEEE Trans Audio Electroacoust AU-15:70–73CrossRefGoogle Scholar
  132. Zumberge M, Berger J, Hedlin MAH, Husmann E, Nooner S, Hilt R, Widmer-Schnidrig R (2003) An optical fiber infrasound sensor: a new lower limit on atmospheric pressure noise between 1 and 10 Hz. J Acoust Soc Am 113(5):2379CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CTBTO, Vienna International CentreViennaAustria

Personalised recommendations