Skip to main content

Role of Ferns in Environmental Cleanup

  • Chapter
  • First Online:
Current Advances in Fern Research

Abstract

Ferns have been identified as a major group of plants that show high efficiency for removing various inorganic and organic contaminants from the environment. Both terrestrial and aquatic fern species including Pteris vittata, Pityrogramma calomelanos, Azolla pinnata, and Salvinia minima have been exploited for removing heavy metals, radionuclides, nutrients, hydrocarbons, and volatile compounds from contaminated soil and water. Efficiency of ferns for removing contaminants depends upon high rate of accumulation/removal and detoxification potential. Fast growth rate, high tolerance capacity, and high efficiency of contaminant removal strengthen the role of ferns as phytoremediators. Hence they can be used as a vital component of phytotechnologies framed for environmental cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Baldawi IA, Sheikh Abdullah SR, Suja F, Anuar N, Idris M (2012) Preliminary test of hydrocarbon exposure on Azolla pinnata in phytoremediation process. In: International conference on environment, energy and biotechnology, vol 33. IACSIT Press, Singapore

    Google Scholar 

  • Alexandra DO, Mihaela DC, Cristina SL (2014) Applications of pteridophytes in phytoremediation. Curr Trends Nat Sci 3:68–73

    Google Scholar 

  • Asbchin SA, Omran AN, Jafari N (2012) Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. Afr J Biotechnol 11(95):16158–16164

    Article  CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Banerjee G, Sarker S (1997) The role of Salvinia rotundifolia in scavenging aquatic Pb (II) pollution: a case study. Bioprocess Eng 17:295–300

    CAS  Google Scholar 

  • Benaroya RO, Tzin V, Tel-Or E, Zamski E (2004) Lead accumulation in the aquatic fern Azolla filiculoides. Plant Physiol Biochem 42:639–645

    Article  CAS  Google Scholar 

  • Bennicelli R, Stezpniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals (Hg(II), Cr(III), Cr(VI)) from municipal waste water. Chemosphere 55:141–146

    Article  CAS  PubMed  Google Scholar 

  • Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A, Wolinska A (2005) Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19:251–255

    Google Scholar 

  • Bucher M, Rausch C, Daram P (2001) Molecular and biochemical mechanisms of phosphorus uptake into plants. J Plant Nutr Soil Sci 164:209–217

    Article  CAS  Google Scholar 

  • Carlozzi P, Padovani G (2016) These plants purify the air, removing VOC’s and more via NASA study. Environ Sci Pollut Res 23:8749–8755

    Article  CAS  Google Scholar 

  • Cohen MF, Williams J, Yamasaki H (2002) Biodegradation of diesel fuel by an Azolla derived bacterial consortium. J Environ Sci Health Part A Tox Hazard Subst Environ Eng A 37(9):1593–1606

    Article  CAS  Google Scholar 

  • Cohen-Shoel N, Barkay Z, Ilzycer D, Gilath I, Tel-Or E (2002) Biofiltration of toxic elements by Azolla biomass. Water Air Soil Pollut 135:93–104

    Article  CAS  Google Scholar 

  • Costa ML, Santos MC, Carrapiço F (1999) Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia 415:323–327

    Article  Google Scholar 

  • De Kempeneer L, Sercu B, Vanbrabant W, Van Langenhove H, Verstraete W (2004) Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl Microbiol Biotechnol 64:284–288

    Article  PubMed  CAS  Google Scholar 

  • Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014) Can ornamental potted plants remove volatile organic compounds from indoor air? A review. Environ Sci Pollut Res 21:13909–13928

    Article  CAS  Google Scholar 

  • Dhir B (2009) Salvinia: an aquatic fern with potential use in phytoremediation. Environ We Int J Sci Technol 4:23–27

    Google Scholar 

  • Dhir B, Sharmila P, Saradhi PP, Sharma S, Kumar R, Mehta D (2011) Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol Environ Saf 74:1678–1684

    Article  CAS  PubMed  Google Scholar 

  • Drăghiceanu OA, Bobrescu CM, Soare LC (2014) Application of pteridophytes in phytoremediation. Curr Trends Natl Sci 3(6):68–73

    Google Scholar 

  • Duan GL, Zhu YG, Tong YP, Cai C, Kneer R (2005) Characterization of arsenate reductase in the extract of root and fronds of chinese brake fern, an arsenic hyperaccumulator. Plant Physiol 138:461–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ena A, Carlozzi P, Pushparaj B, Paperi R, Carnevale S, Angelo S (2007) Ability of the aquatic fern Azolla to remove chemical oxygen demand and polyphenols from olive mill wastewater. Grasas Aceites 58(1):34–39

    Article  CAS  Google Scholar 

  • Espinoza-Quinones FR, Zacarlein CE, Palacio SM, Obregon CL, Zenatti DC, Galante RM, Rossi N, Rossi FL, Pereira RA, Welter RA, Rizzulto MA (2005) Removal of heavy metals from polluted river using aquatic macrophytes Salvinia sp. Braz J Plant Physiol 35:744–746

    CAS  Google Scholar 

  • Feng R, Wei C, Tu S, Tang S, Wu F (2010) Simultaneous hyperaccumulation of arsenic and antimony in Cretan brake fern: evidence of plant uptake and subcellular distributions. Microchem J 97:38–43

    Article  CAS  Google Scholar 

  • Fons F, Froissard D, Bessière JM, Buatois B, Rapior S (2010) Biodiversity of volatile organic compounds from five French ferns. Nat Prod Commun 5(10):1655–1658

    CAS  PubMed  Google Scholar 

  • Forni C, Nicolai MA, D’Egidio DG (2001) Potential of the small aquatic plants Azolla and Lemna for nitrogenous compounds removal from wastewater. Trans Ecol Environ 49:315–324

    Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridockhan W, Goessler W (2002) Arsenic species in an hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator. Sci Total Environ 284:27–35

    Article  CAS  PubMed  Google Scholar 

  • Fuentes II, Espadas-Gil F, Talavera-May C, Fuentes G, Santamaría JM (2014) Capacity of the aquatic fern (Salvinia minima Baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquat Toxicol 155:142–150

    Article  CAS  PubMed  Google Scholar 

  • García ML, Lodeiro PL, Barriada JL, Herrero R, de Vicente MES (2010) Reduction of Cr(VI) levels in solution using bracken fern biomass: batch and column studies. Chem Eng J 165:517–523

    Article  CAS  Google Scholar 

  • Ghodake GS, Telke AA, Jadhav JP, Govindwar SP (2009) Potential of Brassica juncea in order to treat textile effluent contaminated sites. Int J Phytoremediation 11:297–312

    Article  Google Scholar 

  • Giese M, Bauer-Doranth U, Langebartels C, Sandermann H (1994) Detoxification of formaldehyde by the spider plant (Chlorophytum comosum L.) and by soybean (Glycine max L.) cell-suspension cultures. Plant Physiol 104:1301–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Gonzaga MIS, Gonzaga SJA, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric 63:90–101

    Article  CAS  Google Scholar 

  • Hanson AD, Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52:119–137

    Article  CAS  PubMed  Google Scholar 

  • Ho YS (2003) Removal of copper ions from aqueous solution by tree fern. Water Res 37:2323–2330

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Chiu WT, Hsu CS, Huang CT (2004) Sorption of lead ions from aqueous solution using tree fern as a sorbent. Hydrometallurgy 73:55–61

    Article  CAS  Google Scholar 

  • Hoffmann T, Kutter C, Santamaria JM (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4:61–65

    Article  CAS  Google Scholar 

  • Jacobson ME, Chiang SY, Gueriguian L, Westholm LR, Pierson J, Zhu G, Saunders FM (2003) Transformation kinetics of trinitrotoluene conversion in aquatic plants. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation. Wiley, New York

    Google Scholar 

  • Jadia CD, Fulekar MH (2008) Phytotoxicity and remediation of heavy metals by fibrous root grass (sorghum). J Appl Biosci 10:491–499

    Google Scholar 

  • Jafari N, Senobari Z, Pathak RK (2010) Biotechnological potential of Azolla filiculoides, Azolla microphylla and Azolla pinnata for biosorption of Pb(II), Mn(II), cu (II) and Zn(II). Ecol Environ Conserv 16:443–449

    CAS  Google Scholar 

  • Jindrova E, Chocova M, Demnerova K, Brenner V (2002) Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiol 47:83–93

    Article  CAS  Google Scholar 

  • Kagalkar AN, Jagtap UB, Jadhav JP, Bapat VA, Govindwar SP (2009) Biotechnological strategies for phytoremediation of the sulphonated azo dye Direct Red 5B using Blumea malcolmii Hook. Bioresour Technol 100:4104–4110

    Article  CAS  PubMed  Google Scholar 

  • Kagalkar AN, Jagtap UB, Jadhav JP, GovindwarSP BSA (2010) Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta 232(1):271–285

    Article  CAS  PubMed  Google Scholar 

  • Kamachi H, Komori I, Tamura H, Sawa Y, Karahara I, Honma Y, Wada N, Kawabata T, Matsuda K, Ikeno S, Noguchi M, Inoue H (2005) Lead tolerance and accumulation in the gametophytes of the fern Athyrium yokoscense. J Plant Res 118:137–145

    Article  CAS  PubMed  Google Scholar 

  • Kanchenko AG, Singh B, Bhatia NP (2007) Heavy metal tolerance in common fern species. Aust J Bot 55:63–73

    Article  Google Scholar 

  • Kertulis GM, Ma LQ, MacDonald GE, Chen R, Winefordner JD, Cai Y (2005) Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap. Environ Exp Bot 54:239–247

    Article  CAS  Google Scholar 

  • Khandare RV, Kabra AN, Awate AV, Govindvar SP (2013) Synergistic degradation of diazo dye direct red 5B by Portulaca grandiflora and Pseudomonas putida. Int J Environ SciTechnol 10:1039–1050

    Article  CAS  Google Scholar 

  • Khataee AR, Movafeghi A, Vafaei F, Lisar SSY, Zarei M (2013) Potential of the aquatic fern Azolla filiculoides in biodegradation of an azo dye: modeling of experimental results by artificial neural networks. Int J Phytoremediation 15:729–742

    Article  CAS  PubMed  Google Scholar 

  • Kim KJ, Kil MJ, Song JS, Yoo EH, Son K, Kays SJ (2008) Efficiency of volatile formaldehyde removal by indoor plants: contribution of aerial plant parts versus the root zone. J Am Soc Hortic Sci 133(4):521–526

    Google Scholar 

  • Konno H, Nakato T, Nakashima S, Katoh K (2005) Lygodium japonicum fern accumulates copper in the cell wall pectin. J Exp Bot 56:1923–1931

    Article  CAS  PubMed  Google Scholar 

  • Kubicka K, Samecka-Cymerman A, Kolon K, Kosiba P, Kempers AJ (2015) Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals. Environ Sci Pollut Res Int 22:527–534

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Kumar B, Sheel R (2016) Bioremediation of heavy metals by serious aquatic weed, Salvinia. Int J Curr Microbiol Appl Sci 5:355–368

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulate arsenic: a hardy, versatile, fast-growing plant helps to remove arsenic from contaminated soils. Nature 409:579–579

    Article  CAS  PubMed  Google Scholar 

  • Mashkani SG, Ghazvini PTM (2009) Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of biosorption. Bioresour Technol 100:1915–1921

    Article  CAS  Google Scholar 

  • McGuinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA (2003) Variation in arsenic accumulation hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non resistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda LD (2006) Mercury contents in aquatic macrophytes from two reservoirs in the paraiba do sul: Guandu river system, SE Brazil. Braz J Biol 66:101–107

    Article  CAS  PubMed  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Nat Acad Sci USA 93:10519–10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols PB, Couch JD, Al-Hamdani SH (2000) Selected physiological responses of Salvinia minima to different chromium concentrations. Aquat Bot 68:313–319

    Article  CAS  Google Scholar 

  • Nie M, Wang Y, Yu J, Xiao M, Jiang L, Yang J, Fang C, Chen J, Li B (2011) Understanding plant-microbe interactions for phytoremediation of petroleum polluted soil. PLoS One 6(3):1–8

    Article  CAS  Google Scholar 

  • Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2007) Synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.): effects of dye, salinity and metals. Sci Total Environ 384:67–76

    Article  CAS  PubMed  Google Scholar 

  • Nilratnisakorn S, Thiravetyan P, Nakbanpote W (2008) Synthetic reactive dye wastewater treatment by narrow-leaved cattail: studied by XRD and FTIR. Asian J Energ Environ 9:231–252

    Google Scholar 

  • Olguin J, Hernandez E, Ramos I (2002) The effect of both different light conditions and the pH value on the capacity of Salvinia minima BAKER for removing cadmium, lead and chromium. Acta Biotechnol 22:121–131

    Article  CAS  Google Scholar 

  • Olguin EJ, Sánchez-Galván G, Pérez-Pérez T, Pérez-Orozco A (2005) Surface adsorption, intracellular accumulation and compartmentalization of Pb(II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. J Ind Microbiol Biotechnol 32:577–586

    Article  CAS  PubMed  Google Scholar 

  • Olguín EJ, Sánchez-Galván G, Pérez-Pérez P (2007) Assessment of the phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air Soil Pollut 181:135–147

    Article  CAS  Google Scholar 

  • Patil P, Desai N, Govindwar S, Jadhav JP, Bapat V (2009) Degradation analysis of reactive red 198 by hairy roots of Tagetes patula L. (marigold). Planta 230(4):725–735

    Article  CAS  PubMed  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popa K, CecalA HD, Caraus I, Draghici CL (2004) Removal of 60Co2+ and 137Cs+ ions from low radioactive solutions using Azolla caroliniana Willd. Water fern. Central Euro J Chem 2:434–445

    CAS  Google Scholar 

  • Prabhu SG, Srinikethan G, Hegde S (2016) Potential of pteridophytes in heavy metal phytoremediation. Int J Res Eng Technol 5:1–9

    Google Scholar 

  • Qing E, Xiu L, Xiao Y (2009) The arsenic hyperaccumulator fern Pteris vittata L. Environ Sci Technol 43:8488–8495

    Article  CAS  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte. Azolla pinnata. Int J Phytoremediation 10:430–439

    Article  CAS  PubMed  Google Scholar 

  • Rakhshaee R, Khosravi M, TaghiGanji MT (2006) Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater B134:120–129

    Article  CAS  Google Scholar 

  • Ribeiro TH, Rubio J, Smith RW (2003) A dried hydrophobic aquaphyte as an oil filter for oil/water emulsions. Spill Sci Technol Bull 8:483–489

    Article  CAS  Google Scholar 

  • Rizwana M, Darshan M, Nilesh D (2014) Phytoremediation of textile waste water using potential wetland plant: eco-sustainable approach. Int J Interdisciplinary Multidisciplinary Stud 1(4):130–138

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sánchez-Galván G, Monroy O, Gómez G, Olguín EJ (2008) Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut 194:77–90

    Article  CAS  Google Scholar 

  • Schmitz H, Hilgers U, Weidner M (2000) Assimilation and metabolism of formaldehyde by leaves appear unlikely to be of value for indoor air purification. New Phytol 147(2):307–315

    Article  CAS  Google Scholar 

  • Sharma A, Sachdeva S (2015) Cadmium toxicity and its phytoremediation a review. Int J Sci Eng Res 6(9):395–405

    Google Scholar 

  • Sheel R, Anand M, Nisha K (2015) Phytoremediation of heavy metals (Zn and Pb) and its toxicity on Azolla filiculoides. Int J Sci Res 4(7):1238–1241

    Google Scholar 

  • Shin H, Dewbre GR, Harrison MJ (2004) Phosphate transport in Arabidopsis: Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high-phosphate environments. Plant J 39:629–642

    Article  CAS  PubMed  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2011) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:22–137

    Google Scholar 

  • Srivastava M, Ma LQ, SinghN SS (2005) Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic. J Exp Bot 56:1335–1342

    Article  CAS  PubMed  Google Scholar 

  • Srivastava M, Ma LQ, Santos JAG (2006) Three new arsenic hyperaccumulating ferns. Sci Total Environ 364:24–31

    Article  CAS  PubMed  Google Scholar 

  • Stepniewska Z, Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A, Wolinska A (2005) Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19:251–255

    CAS  Google Scholar 

  • Suñe N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    Article  PubMed  CAS  Google Scholar 

  • Taghi-Ganji M, Khosravi M, Rakhshaee R (2005) Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated A. filiculoides with H2O2/MgCl2. Int J Environ Sci Technol 1:265–271

    Article  Google Scholar 

  • Tiwari S, Sarangi BK (2017) Comparative analysis of antioxidant response by Pteris vittata and Vetiveria zizanioides towards arsenic stress. Ecol Eng 100:211–218

    Article  Google Scholar 

  • Torbati S, Movafeghi A, Khataee AR (2015) Biodegradation of C.I. acid blue 92 by Nasturtium officinale: study of some physiological responses and metabolic fate of dye. Int J Phytoremediation 17:322–329

    Article  CAS  PubMed  Google Scholar 

  • Treesubsuntorn C, Thiravetyan P (2012) Removal of benzene from indoor air by Dracaena sanderiana: effect of wax and stomata. Atmos Environ 57:317–321

    Article  CAS  Google Scholar 

  • Tu C, Ma LQ, Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J Environ Qual 31:1671–1675

    Article  CAS  PubMed  Google Scholar 

  • Tu S, Ma LQ, Luongo T (2004a) Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil 258:9–19

    Article  CAS  Google Scholar 

  • Tu S, Ma LQ, MacDonald GE (2004b) Arsenic absorption, speciation and thiol formation in excised parts of Pteris vittata in the presence of phosphorus. Environ Exp Bot 51:121–131

    Article  CAS  Google Scholar 

  • Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 6:24–29

    Article  Google Scholar 

  • Vafaei F, Movafeghi A, Khataee AR, Zarei M, Lisar SSY (2013) Potential of Hydrocotyle vulgaris for phytoremediation of a textile dye: inducing antioxidant response in roots and leaves. Ecotoxicol Environ Saf 93:128–134

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhao FJ, Meharg AA, Raab A, Feldman J, McGrath SP (2002) Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation. Plant Physiol 130:1552–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wathakar AD, Khandare RV, Kamble AA, Mulla AY, Govindwar SP, Jadhav JP (2013) Phytoremediation potential of Petunia grandiflora Juss., an ornamental plant to degrade a disperse, disulfonate triphenylmethane textile dye Brilliant Blue G. Environ Sci Pollut Res Int 20:939–949

    Article  CAS  Google Scholar 

  • Xu QS, Ji WD, Yang HY, Wang HX, Xu Y, Zhao J, Shi GX (2009) Cadmium accumulation and phytotoxicity in an aquatic fern, Salvinia natans (Linn.) Acta Ecol Sin 29:3019–3027

    CAS  Google Scholar 

  • Zazouli MA, Balarak D, Mahdavi Y (2013) Pyrocatechol removal from aqueous solutions by using Azolla filiculoides. Health Scope 2(1):25–30

    Article  Google Scholar 

  • Zhang W, Cai Y, Tu C, Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci Total Environ 300:167–177

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cai Y, Downum KR, Ma LQ (2004) Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). Environ Pollut 131:337–345

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Duncun JR (1997) Removal and recovery of nickel from aqueous solution and electroplating rinse effluent using Azolla filiculoides. Process Biochem 33(3):249–255

    Article  Google Scholar 

  • Zhao FJ, Dunham SJ, SP MG (2002) Arsenic hyperaccumulation by different fern species. New Phytol 156:27–31

    Article  CAS  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    Article  CAS  Google Scholar 

  • Zheng J, Niu T, Wu G, Chen W (2010) One magic pteridophyte (Pteris vittata L.): application in remediating arsenic contaminated soils and mechanism of arsenic hyperaccumulation. Front Agric 4:293–298

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhir, B. (2018). Role of Ferns in Environmental Cleanup. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_25

Download citation

Publish with us

Policies and ethics