Skip to main content

Ecomorphology of Stomata in Temperate Ferns Under Contrasting Environments

  • Chapter
  • First Online:

Abstract

Stomata are crucial structures for plants to better adapt themselves to the environment, in relation to many ecological variables. In this sense, it is widely accepted that (a) stomatal size is much more genetically fixed than density, which can be dynamically modified in new leaves to adjust them to changing conditions and (b) density is expected to increase with light and to decrease with water availability. These statements come from research done mainly for the angiosperms and gymnosperms, whilst ferns remain highly understudied. The main objective of this work is to investigate the relationship between morphological traits of fern stomata and light and water environments. We selected 15 species of different ecological preferences, representing contrasted habitats of light and water. Fifteen to twenty individuals of each species were sampled, and from each one, we chose three different adult fronds. One measurement of density and five measurements of stomata length were done under OM in each frond. The functional variable potential conductance index (PCI) has been calculated from length and density and used as a proxy of transpiration area. This study allows extending the knowledge of ecomorphology of stomata in temperate fern species. Generally speaking, these ferns behave in similar ways to other known plant groups: length has more genetic significance, whilst density is usually modified depending on the environment. However, temperate ferns seem to modify density by modifying ordinary epidermal cells instead of size of stomata, a fact that is known only for a small number of angiosperms. Species that inhabit low water availability environments (exposed rocks, crevices and cliffs) developed significant shorter stomata, but at higher densities and with higher potential conductance, species from low light availability environments (shadowed rocks and forests) have longer stomata and lower density. These results increase the knowledge on how temperate ferns can adapt their bodies to occupy different ecological niches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR, Sandquist DR, Geber MA, Evans AS, Dawson TE, Lachowicz MJ (2000) The evolution of plant ecophysiological traits: recent advances and future directions. Bioscience 50:979–995

    Article  Google Scholar 

  • Atala C, Saldaña A, Navarrete E (2012) Stomatal frequency and gas exchange differs in two Blechnum species (Pteridophyta, Blechnaceae) with contrasting ecological breadth. Gayana Botanica 69:161–166

    Article  Google Scholar 

  • Brodribb TJ, McAdam SAM, Jordan GJ, Feild TS (2009) Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytol 183:839–847

    Article  PubMed  Google Scholar 

  • Brownlee C (2001) The long and the short of stomatal density signals. Trends Plant Sci 6:441–442

    Article  CAS  PubMed  Google Scholar 

  • Camargo MAB, Marenco RA (2011) Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia. Acta Amazon 41:205–212

    Article  Google Scholar 

  • Castroviejo S, Laínz M, López G, Montserrat P, Muñoz F, Paiva J, Villar L (1986) Flora Iberica I. CSIC, Madrid

    Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4:117–228

    Article  Google Scholar 

  • Doi M, Wada M, Shimazaki K (2006) The fern Adiantum Capillus-Veneris lacks stomatal responses to blue light. Plant Cell Physiol 47:748–755

    Article  CAS  PubMed  Google Scholar 

  • Evert RF, Eichhorn SE (2006) Esau's plant anatomy. Wiley, New York

    Book  Google Scholar 

  • Ferrer-Castan D, Vetaas OR (2005) Pteridophyte richness, climate and topography in the Iberian peninsula: comparing spatial and nonspatial models of richness patterns. Glob Ecol Biogeogr 14:155–165

    Article  Google Scholar 

  • Franks PJ, Farquhar GD (2007) The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol 143:78–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel y Galán JM, Prada C, Rolleri CH, Lahoz-Beltrá R, Martínez-Calvo C (2011) Biometry of stomata in Blechnum species (Blechnaceae) with some taxonomic and ecological implications for the ferns. Revista De Biologia Tropical 59:403–415

    PubMed  Google Scholar 

  • Gay AP, Hurd RG (1975) Influence of light on stomatal density in tomato. New Phytol 75:37–46

    Article  Google Scholar 

  • Givnish TJ (1988) Adaptation to sun and shade - a whole-plant perspective. Aust J Plant Physiol 15:63–92

    Article  Google Scholar 

  • Haworth M, Elliott-Kingston C, McElwain JC (2013) Co-ordination of physiological and morphological responses of stomata to elevated [CO2] in vascular plants. Oecologia 171:71–82

    Article  PubMed  Google Scholar 

  • Henriot A, Cheype JL (2012) Piximètre, la measure des dimensions sur images

    Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Holland N, Richardson AD (2009) Stomatal length correlates with elevation of growth in four temperate species. J Sustain For 28:63–73

    Article  Google Scholar 

  • Hunt MA, Davidson NJ, Unwin GL, Close DC (2002) Ecophysiology of the soft tree fern, Dicksonia Antarctica labill. Austral Ecol 27:360–368

    Article  Google Scholar 

  • Jones HG (1998) Stomatal control of photosynthesis and transpiration. J Exp Bot 49:387–398

    Article  Google Scholar 

  • Kato M, Imaichi R (1992) Leaf anatomy of tropical fern rheophytes, with its evolutionary and ecological implications. Can J Bot 70:165–174

    Article  Google Scholar 

  • Kawai H, Kanegae T, Christensen S, Kiyosue T, Sato Y, Imaizumi T, Kadota A, Wada M (2003) Responses of ferns to red light are mediated by an unconventional photoreceptor. Nature 421:287–290

    Article  CAS  PubMed  Google Scholar 

  • Kessler M, Siorak Y, Wunderlich M, Wegner C (2007) Patterns of morphological leaf traits among pteridophytes along humidity and temperature gradients in the Bolivian Andes. Funct Plant Biol 34:963–971

    Article  Google Scholar 

  • Kluge J, Kessler M (2007) Morphological characteristics of fern assemblages along an elevational gradient, patterns and causes. Ecotropica 13:27–43

    Google Scholar 

  • Kluge J, Bach K, essler M (2008) Elevational distribution and zonation of tropical pteridophyte assemblages in Costa Rica. BasicAppl Ecol 9:35–43

    Article  Google Scholar 

  • Liu S, Liu J, Cao J, Bai C, Shi R (2006) Stomatal distribution and character analysis of leaf epidermis of jujube under drought stress. J Anhui Agric Sci 34:1315–1318

    Google Scholar 

  • Maherali H, Reid CD, Polley HW, Johnson HB, Jackson RB (2002) Stomatal acclimation over a subambient to elevated CO2 gradient in a C3/C4 grassland. Plant Cell Environ 25:557–566

    Article  CAS  Google Scholar 

  • Martinez JP, Silva H, Ledent JF, Pinto M (2007) Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.) Eur J Agron 26:30–38

    Article  Google Scholar 

  • McAdam SAM, Brodribb TJ (2012) Stomatal innovation and the rise of seed plants. Ecol Lett 15:1–8

    Article  PubMed  Google Scholar 

  • McAdam SAM, Brodribb TJ (2013) Ancestral stomatal control results in a canalization of fern and lycophyte adaptation to drought. New Phytol 198:429–441

    Article  CAS  PubMed  Google Scholar 

  • Mehltreter K, Walker LR, Sharpe JM (2010) Fern ecology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Meidner H, Mansfield T (1968) Physiology of stomata. McGraw-Hill, London

    Google Scholar 

  • Metcalfe CR, Chalk L (1979) Anatomy of the dicotyledons. Clarendon, London

    Google Scholar 

  • Moreno JC, Lobo JM (2008) Iberian–Balearic fern regions and their explanatory variables. Plant Ecol 198:149–167

    Article  Google Scholar 

  • Öpik H, Rolfe SA (2005) The physiology of flowering plants. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pichi Sermolli REG (1979) A survey of pteridological flora of the Mediterranean region. Webbia 34:175–242

    Article  Google Scholar 

  • Pompelli MF, Martins SCV, Celin EF, Ventrella MC, DaMatta FM (2010) What is the influence of ordinary epidermal cells and stomata on the leaf plasticity of coffee plants grown under full-sun and shady conditions? Braz J Biol 70:1083–1088

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar M (2003) Structure, delimitation, nomenclature and classification of stomata. Acta Bot Sin 462:242–252

    Google Scholar 

  • Quarrie SA, Jones HG (1977) Effects of abscisic acid and water stress on development and morphology of wheat. J Exp Bot 28:192–203

    Article  CAS  Google Scholar 

  • Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999) Generality of leaf trait relationships: a test across six biomes. Ecology 80:1955–1969

    Article  Google Scholar 

  • Riano K, Briones O (2013) Leaf physiological response to light environment of three tree fern species in a Mexican cloud forest. J Trop Ecol 29:217–228

    Article  Google Scholar 

  • Rolleri C (1977) Correlation of morphology and geographical distribution in lycopodium saururus. Am Fern J 67:109–120

    Article  Google Scholar 

  • Rolleri C, Prada C, Gabriel y Galán JM, Passarelli L (2013) Especies arborescentes del género Blechnum (Blechnaceae-Polypodiophyta). Revista De Biologia Tropical 61:377–408

    PubMed  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. University Press, Oxford

    Google Scholar 

  • Salisbury EJ (1927) On the causes and ecological significance of stomatal frequency, with special reference to the woodland flora. Philos Trans R Soc B 216:1–65

    Article  Google Scholar 

  • Salvo E (1990) Guía de helechos de la Península Ibérica y Baleares. Pirámide, Madrid

    Google Scholar 

  • Salvo E, Cabezudo B, España L (1984) Atlas de la pteridoflora ibérica y balear. Acta Botanica Malacitana 9:105–128

    Google Scholar 

  • Schulze ED, Lange OL, Kappen L, Buschbom U, Evenari M (1973) Stomatal responses to changes in temperature at increasing water stress. Planta 110:29–42

    Article  CAS  PubMed  Google Scholar 

  • Spence RD, Wu H, Sharpe PJH, Clark KG (1986) Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ 9:197–202

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York

    Google Scholar 

  • Xu Z, Zhou G (2008) Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J Exp Bot 59:3317–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Universidad Complutense Research Groups Programme (“Biodiversity and Taxonomy of Cryptogamic Plants”, UCM 910801) and by the EU-ERASMUS mobility programme. We thank the curator of MACB herbarium for her willingness to facilitate us the use of the material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Maria Gabriel y Galán .

Editor information

Editors and Affiliations

Appendix 22.1

Appendix 22.1

Samples used in the study, with voucher information. All samples came from Spain except those specifically quoted. The information included is ordered by country/Spanish province, followed by location, MACB (Madrid Ciencias Biológicas) herbarium number and, in parenthesis, the individuals.

Adiantum capillus-veneris L. ASTURIAS: Cangas de Onís, MACB 36194 (ind. 9–12). CASTELLÓN: Peñíscola, MACB 104250 (ind. 1–8). VALENCIA: Tuéjar, MACB 43430 (ind. 13–16). Asplenium marinum L. ASTURIAS: Luarca, MACB 36191 (ind. 8), MACB 107532 (ind. 13–16); Gozón, MACB 3646 (ind. 10, 11); Castropol, MACB 55943 (ind. 12), MACB 107533 (ind. 17–19). GUIPÚZCOA: Donostia, MACB 36078 (ind. 6). LA CORUÑA: Corme, MACB 24302 (ind. 1); Porto do Son, MACB 43332 (ind. 2); Cayón, MACB 4373 (ind. 3); Malpica, MACB 26154 (ind. 5). PONTEVEDRA: La Guardia, MACB 4773 (ind. 4); Bueu, MACB 18655 (ind. 7); Islas Cies, MACB 36119 (ind. 9). Asplenium scolopendrium L. ASTURIAS: Brieves, MACB 104248 (ind. 1–7). LEÓN: Villasecino, MACB 107538 (ind. 8–18). Asplenium trichomanes L. ASTURIAS: Luarca, MACB 107542 (ind. 17–20). BURGOS. Crespos, MACB 107543 (ind. 13–16). GUADALAJARA: río Bornova, MACB 22462 (ind. 3). LEÓN: Santalavilla, MACB 62938 (ind. 1). MADRID: Torrelodones, MACB 104525 (ind. 5–12). PALENCIA: Velilla del rio Carrión, MACB 30953 (ind. 2). SALAMANCA: Linares de Riofrío, MACB 1768 (ind. 4). Asplenium viride Huds. ASTURIAS: Teverga, MACB 107544 (ind. 9–15). GUIPÚZCOA: Aralar, MACB 43217 (ind. 5–7). HUESCA: Aínsa, MACB 36183 (ind. 4). PALENCIA: Velilla del Río Carrión, MACB 39484 (ind. 8). VIZCAYA: Zeanuri, MACB 62929 (ind. 1–3). Athyrium filix-femina (L.) Roth. ASTURIAS: Luarca, MACB 107531 (ind. 8–15). ÁVILA: Candeleda, MACB 53208 (ind. 1–2); El Barranco, MACB 57772 (ind. 5–7). CÁCERES. Viandar de la Vera, MACB 59103 (ind. 3). TERUEL: Orihuela, MACB 43319 (ind. 4). Botrychium lunaria (L.) Sw. ASTURIAS: Somiedo, MACB 104249 (ind. 1–15). Cystopteris fragilis (L.) Berhn. BURGOS: Sierra de la Demanda, MACB 56770 (ind. 1–4). LA RIOJA: Ezcaray, MACB 57500 (ind. 5); Villoslada de Cameros, MACB 107545 (ind. 9–16). LEÓN: Truchillas, MACB 44460 (ind. 6–7). TENERIFE: Tágara, MACB 36110 (ind. 8). Dryopteris affinis (Lowe) Fraser-Jenk. ITALY. TOSCANA: Massa, MACB 58804 (ind. 3). LUACCA: Versilia, MACB 58807 (ind. 4); Massa y Carrara, MACB 58801 (ind. 5). Massa, MACB 58802 (ind. 6). SPAIN. ASTURIAS: Valgrande, MACB 31115 (ind. 11). CANTABRIA: Resconorio, MACB 31010 (ind. 12); Cosgaya, MACB 109253 (ind. 13–20); Torcollano, MACB 62921 (ind. 7). LA CORUÑA: Betanzos, MACB 92416 (ind. 1); Somozas, MACB 92391 (ind. 2); Cerdedo, MACB 43412 (ind. 9); Caveiro, MACB 77197 (ind. 8). ORENSE: Vilarino de Conso, MACB 59119 (ind. 10). Dryopteris filix-mas (L.) Schott. ITALY. TOSCANA: A Cansoli, MACB 58812 (ind. 4). SPAIN. ÁLAVA: Vitoria, MACB 59150 (ind. 2). CANTABRIA: Cosgaya, MACB 109257 (ind. 5–15). CIUDAD REAL: Puebla de Don Rodrigo, MACB 66633 (ind. 3). LÉRIDA: Vall Ferrera, MACB 62915 (ind. 1). Osmunda regalis L. ASTURIAS: Luarca, MACB 104246 (ind. 1–9). CANTABRIA: Liendo, MACB 107332 (ind. 12–15). CÁCERES: Villanueva de la Vera, MACB 109360 (ind. 10–11). Polystichum aculeatum (L.) Roth ex Mert. FRANCE. HAUTE GARONNE: Pirineos, MACB 42766 (ind. 19). ITALY. LUACCA: Garfagnana, MACB 58833 (ind. 18). SPAIN. ALAVA: Alto Iturrieta, MACB 18834 (ind. 1). BURGOS: Los Altos, MACB 56768 (ind. 5–6); Monte Cervera, MACB 59157 (ind. 12–14). GRANADA: Güejar-Sierra, MACB 62969 (ind. 2); Sierra Nevada, MACB 9546 (ind. 20). HUESCA: Panticosa, MACB 19040 (ind. 3). LEÓN: Salamón, MACB 43327 (ind. 4); Palacios del Sil, MACB 74457 (ind. 7–11); La Cueta, MACB 59213 (ind. 15). NAVARRA: Irañeta, MACB 43218 (ind. 16–17). Polystichum lonchitis (L.) Roth. ASTURIAS: Somiedo, MACB 104247 (ind. 1–11). CANTABRIA: Camaleño, MACB 109629 (ind. 12–20). Polystichum setiferum ( Forssk.) T. Moore ex Woyn. LA CORUÑA: Abaña, MACB 92414 (ind. 2); Caaveiro, MACB 60505 (ind. 4). CANTABRIA: Luena, MACB 55630 (ind. 3); Cosgaya, MACB 109256 (ind. 5–15). LEÓN: Balboa, MACB 60520 (ind. 1). Struthiopteris spicant (L.) Weiss. FRANCE. BRETAGNE: Monfort, MACB 109254 (ind. 1–10). SPAIN. ÁLAVA: Ulibarri-Olleros, MACB 30899 (ind. 15–16). CIUDAD REAL: Navas de Estena, MACB 36083 (ind. 12–13). LEÓN: Burón, MACB 17528 (ind. 11). LUGO: Murás, MACB 30875 (ind. 14).

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabriel y Galán, J.M. et al. (2018). Ecomorphology of Stomata in Temperate Ferns Under Contrasting Environments. In: Fernández, H. (eds) Current Advances in Fern Research. Springer, Cham. https://doi.org/10.1007/978-3-319-75103-0_22

Download citation

Publish with us

Policies and ethics