Advertisement

A Joint Energy Storage Systems and Wind Farms Long-Term Planning Model Considering Voltage Stability

  • Saman Nikkhah
  • Abbas Rabiee
Chapter

Abstract

The issues such as the price of oil and global warming are economic and environmental concerns that increase wind power penetration as a renewable energy source in today’s power systems worldwide. Unfortunately, variability and intermittency of wind energy could cause serious operational concerns, such as voltage stability problem. Therefore, it is important to minimize the negative aspects of wind power penetration on the voltage stability of power system. Consequently, the aim of this chapter is to provide a comprehensive long-term planning model for expansion of joint energy storage systems (ESSs) and large-scale wind farms (WFs) in order to increase wind power penetration and grid voltage stability. The proposed voltage stability constrained planning model comprises the following steps: (1) modeling of the impact of voltage stability constraints on the optimal capacity of WFs; (2) maximizing the profit obtained via wind energy procurement for WFs owners; (3) using ESS to facilitate long-term wind power integration and to alleviate the intermittency of WFs power generation; (4) investigation of the impact of ESS and WFs on the voltage stability. It is worth to note that ultimate goals are to increase the wind power penetration and to maintain a desired level of voltage stability. The results obtained from implementation of proposed method on the IEEE New England 39-bus standard test system demonstrate the effectiveness of the joint ESS and WFs planning model.

Keywords

Long-term planning Wind energy Energy storage Voltage stability 

References

  1. 1.
    Gyuk IP, Eckroad S (2004) Energy storage for grid connected wind generation applications, US Department of Energy, Washington DC, EPRI-DOE Handbook Supplement, vol 1008703Google Scholar
  2. 2.
    Chen C, Duan S, Cai T, Liu B, Hu G (2011) Optimal allocation and economic analysis of energy storage system in microgrids. IEEE Trans Power Electron 26(10):2762–2773.  https://doi.org/10.1109/TPEL.2011.2116808 CrossRefGoogle Scholar
  3. 3.
    Barton JP, Infield DG (2004) Energy storage and its use with intermittent renewable energy. IEEE Trans Energy Convers 19(2):441–448.  https://doi.org/10.1109/TEC.2003.822305 CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Dong ZY, Luo F, Zheng Y, Meng K, Wong KP (2016) Optimal allocation of battery energy storage systems in distribution networks with high wind power penetration. IET Renew Power Gener 10(8):1105–1113.  https://doi.org/10.1049/iet-rpg.2015.0542 CrossRefGoogle Scholar
  5. 5.
    Atwa YM, El-Saadany E (2010) Optimal allocation of ESS in distribution systems with a high penetration of wind energy. IEEE Trans Power Syst 25(4):1815–1822.  https://doi.org/10.1109/TPWRS.2010.2045663 CrossRefGoogle Scholar
  6. 6.
    Xiong P, Singh C (2016) Optimal planning of storage in power systems integrated with wind power generation. IEEE Trans Sustainable Energy 7(1):232–240.  https://doi.org/10.1109/TSTE.2015.2482939 CrossRefGoogle Scholar
  7. 7.
    Maghouli P, Soroudi A, Keane A (2016) Robust computational framework for mid-term techno-economical assessment of energy storage. IET Gener Transm Distrib 10(3):822–831.  https://doi.org/10.1049/iet-gtd.2015.0453 CrossRefGoogle Scholar
  8. 8.
    Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M (2017) A stochastic multi-objective framework for optimal scheduling of energy storage systems in microgrids. IEEE Trans Smart Grid 8(1):117–127.  https://doi.org/10.1109/TSG.2016.2598678 CrossRefGoogle Scholar
  9. 9.
    Jabr RA, Džafić I, Pal BC (2015) Robust optimization of storage investment on transmission networks. IEEE Trans Power Syst 30(1):531–539.  https://doi.org/10.1109/TPWRS.2014.2326557 CrossRefGoogle Scholar
  10. 10.
    Soroudi A, Siano P, Keane A (2016) Optimal DR and ESS scheduling for distribution losses payments minimization under electricity price uncertainty. IEEE Trans Smart Grid 7(1):261–272.  https://doi.org/10.1109/TSG.2015.2453017 CrossRefGoogle Scholar
  11. 11.
    Le HT, Santoso S, Nguyen TQ (2012) Augmenting wind power penetration and grid voltage stability limits using ESS: application design, sizing, and a case study. IEEE Trans Power Syst 27(1):161–171.  https://doi.org/10.1109/TPWRS.2011.2165302 CrossRefGoogle Scholar
  12. 12.
    Malysz P, Sirouspour S, Emadi A (2014) An optimal energy storage control strategy for grid-connected microgrids. IEEE Trans Smart Grid 5(4):1785–1796.  https://doi.org/10.1109/TSG.2014.2302396 CrossRefGoogle Scholar
  13. 13.
    Murillo-Sanchez CE, Zimmerman RD, Anderson CL, Thomas RJ (2013) Secure planning and operations of systems with stochastic sources, energy storage, and active demand. IEEE Trans Smart Grid 4(4):2220–2229.  https://doi.org/10.1109/TSG.2013.2281001 CrossRefGoogle Scholar
  14. 14.
    Chen H, Zhang R, Li G, Bai L, Li F (2016) Economic dispatch of wind integrated power systems with energy storage considering composite operating costs. IET Gener Transm Distrib 10(5):1294–1303.  https://doi.org/10.1049/iet-gtd.2015.0410 CrossRefGoogle Scholar
  15. 15.
    Luo F, Meng K, Dong ZY, Zheng Y, Chen Y, Wong KP (2015) Coordinated operational planning for wind farm with battery energy storage system. IEEE Trans Sustainable Energy 6(1):253–262.  https://doi.org/10.1109/TSTE.2014.2367550 CrossRefGoogle Scholar
  16. 16.
    Ghofrani M, Arabali A, Etezadi-Amoli M, Fadali MS (2013) A framework for optimal placement of energy storage units within a power system with high wind penetration. IEEE Trans Sustainable Energy 4(2):434–442.  https://doi.org/10.1109/TSTE.2012.2227343 CrossRefGoogle Scholar
  17. 17.
    Chacra FA, Bastard P, Fleury G, Clavreul R (2005) Impact of energy storage costs on economical performance in a distribution substation. IEEE Trans Power Syst 20(2):684–691.  https://doi.org/10.1109/TPWRS.2005.846091 CrossRefGoogle Scholar
  18. 18.
    Abbey C, Joós G (2009) A stochastic optimization approach to rating of energy storage systems in wind-diesel isolated grids. IEEE Trans Power Syst 24(1):418–426.  https://doi.org/10.1109/TPWRS.2008.2004840 CrossRefGoogle Scholar
  19. 19.
    Rabiee A, Soroudi A, Mohammadi-Ivatloo B, Parniani M (2014) Corrective voltage control scheme considering demand response and stochastic wind power. IEEE Trans Power Syst 29(6):2965–2973.  https://doi.org/10.1109/TPWRS.2014.2316018 CrossRefGoogle Scholar
  20. 20.
    Rabiee A, Nikkhah S, Soroudi A, Hooshmand E (2016) Information gap decision theory for voltage stability constrained OPF considering the uncertainty of multiple wind farms. IET Renew Power Gener 11(5):585–592.  https://doi.org/10.1049/iet-rpg.2016.0509 CrossRefGoogle Scholar
  21. 21.
    Mohseni-Bonab SM, Rabiee A, Mohammadi-Ivatloo B (2016) Voltage stability constrained multi-objective optimal reactive power dispatch under load and wind power uncertainties: a stochastic approach. Renew Energy 85:598–609.  https://doi.org/10.1016/j.renene.2015.07.021 CrossRefGoogle Scholar
  22. 22.
    Hung DQ, Mithulananthan N, Bansal R (2014) Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability. Appl Energy 113:1162–1170.  https://doi.org/10.1016/j.apenergy.2013.08.069 CrossRefGoogle Scholar
  23. 23.
    Sugihara H, Yokoyama K, Saeki O, Tsuji K, Funaki T (2013) Economic and efficient voltage management using customer-owned energy storage systems in a distribution network with high penetration of photovoltaic systems. IEEE Trans Power Syst 28(1):102–111.  https://doi.org/10.1109/TPWRS.2012.2196529 CrossRefGoogle Scholar
  24. 24.
    Lee SJ, Kim JH, Kim CH, Kim SK, Kim ES, Kim DU, Mehmood KK, Khan SU (2016) Coordinated control algorithm for distributed battery energy storage systems for mitigating voltage and frequency deviations. IEEE Trans Smart Grid 7(3):1713–1722.  https://doi.org/10.1109/TSG.2015.2429919 CrossRefGoogle Scholar
  25. 25.
    Arulampalam A, Barnes M, Jenkins N, Ekanayake JB (2006) Power quality and stability improvement of a wind farm using STATCOM supported with hybrid battery energy storage. IEE Proc-Gener Transm Distrib 153(6):701–710.  https://doi.org/10.1049/ip-gtd:20045269 CrossRefGoogle Scholar
  26. 26.
    Le HT, Santoso S (2007) Analysis of voltage stability and optimal wind power penetration limits for a non-radial network with an energy storage system. In: IEEE General Meeting in Power Engineering Society, IEEE, pp 1–8.  https://doi.org/10.1109/PES.2007.385735
  27. 27.
    Rabiee A, Soroudi A, Keane A (2015) Information gap decision theory based OPF with HVDC connected wind farms. IEEE Trans Power Syst 30(6):3396–3406.  https://doi.org/10.1109/TPWRS.2014.2377201 CrossRefGoogle Scholar
  28. 28.
    Rabiee A, Parniani M (2013) Voltage security constrained multi-period optimal reactive power flow using benders and optimality condition decompositions. IEEE Trans Power Syst 28(2):696–708.  https://doi.org/10.1109/TPWRS.2012.2211085 CrossRefGoogle Scholar
  29. 29.
    Rabiee A, Soroudi A, Keane A (2015) Risk-averse preventive voltage control of ac/dc power systems including wind power generation. IEEE Trans Sustainable Energy 6(4):1494–1505.  https://doi.org/10.1109/TSTE.2015.2451511 CrossRefGoogle Scholar
  30. 30.
    Brooke A, Kendrick D, Meeraus A, Raman R, Rosenthal R (1998) GAMS: a user’s guide. GAMS Development Corporation, Washington, DCGoogle Scholar
  31. 31.
    Brooke A, Kendrick D, Meeraus A, Raman R, Rosenthal R (1998) GAMS: the solver manuals. GAMS Development Corporation, Washington, DCGoogle Scholar
  32. 32.
    Bussieck MR, Vigerske S (2010) MINLP solver software. In: Wiley encyclopedia of operations research and management science. Wiley, Hoboken.  https://doi.org/10.1002/9780470400531.eorms0527 Google Scholar
  33. 33.
    Ameli A, Bahrami S, Khazaeli F, Haghifam MR (2014) A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner’s and distribution company’s viewpoints. IEEE Trans Power Delivery 29(4):1831–1840.  https://doi.org/10.1109/TPWRD.2014.2300845 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Electrical EngineeringUniversity of ZanjanZanjanIran

Personalised recommendations